LINK:迷宫探险

题目中要求在最优的策略下的最大概率 而并非期望概率。

一个坑点 题目中虽然没有明说 但是 探险者是知道地图的模样和每个陷阱的概率的。

所以才有最优策略一说。

最优策略尽管不知道可以随便走取max即可。

容易想到 对于当前状态 有 x,y,hp,s 来描述 。倒着设状态 那就是当前状态能到达终点的最大概率。

定义hp s都是递增的 不过还是不能线性递推。存在问题 可能状态之间可以互相转移的问题。

显然状态转移回来是不必要的 所以此时概率为0 利用dfs栈可以很容易判断出来 所以考虑记忆化搜索。

不过这引出了另外一个问题 当前状态可能被多次访问到 不过当前状态被第一次访问到已经被标记了 此时可能不是最优的。

容易想到转移到当前状态最多只有4种可能都记录下来即可。

6.16 Update:被wn给hack掉了 发现上面的思路在能走回路的时候会挂掉。

原因:存在一种最优方案使得从某个点走到另外一个点然后再跑回来的情况。

同时也存在一开始就跑过去的情况是最优的。

实际上上述做法能解决第一种情况 而第二种情况就在第一种情况被解决时 被卡掉了。

因为 可以走完这步 发现无毒 然后一些较优的状态可能被一些情况给卡掉了 因为原地乱转的原因。

一个好的解决方法:强制不让其乱转 保证状态之间的拓扑关系 这样就不会出现问题了。

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define mod 998244353
#define S second
#define F first
#define Set(a,v) memset(a,v,sizeof(a))
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
//偷税吧 少年
const int MAXN=33,N=244;
int n,m,H,k,maxx,s1,s2,maxx1,ans;
int w[1<<5],b[N],id;
int vis[MAXN][MAXN][6][N];
db g[N][6],f[MAXN][MAXN][6][N];
char a[MAXN][MAXN];
int dx[4]={1,-1,0,0};
int dy[4]={0,0,-1,1};
vector<pii>v[MAXN][MAXN][MAXN];
int mark[MAXN][MAXN],cc[N];
inline int pd(int s,int x)
{
return s>>x-1&1;
}
inline void dfs(int x,int y,int s,int xx,int yy)
{
if(mark[x][y]==id)return;
mark[x][y]=id;
if(a[x][y]=='@'||(a[x][y]>='A'&&a[x][y]<='Z'&&!pd(s,a[x][y]-'A'+1)&&(x!=xx||y!=yy)))
{
v[s][xx][yy].pb(mk(x,y));return;
}
for(int i=0;i<4;++i)
{
int wx=dx[i]+x;
int wy=dy[i]+y;
if(wx<=0||wx>n||wy<=0||wy>m)continue;
if(a[wx][wy]=='#')continue;
dfs(wx,wy,s,xx,yy);
}
}
inline void prepare()
{
rep(1,n,i)rep(1,m,j)
{
if(a[i][j]=='#'||a[i][j]=='@')continue;
rep(0,maxx,s)
{
++id;
dfs(i,j,s,i,j);
}
}
}
inline db dp(int x,int y,int hp,int s)
{
if(vis[x][y][hp][s])return f[x][y][hp][s];
vis[x][y][hp][s]=1;
if(hp==0)return f[x][y][hp][s]=0;
if(a[x][y]=='@')return f[x][y][hp][s]=1;
db ans=0;int ww=cc[s];
vep(0,v[ww][x][y].size(),i)
{
int xx=v[ww][x][y][i].F;
int yy=v[ww][x][y][i].S;
if(a[xx][yy]=='@')ans=max(ans,dp(xx,yy,hp,s));
else
{
int ss=a[xx][yy]-'A'+1;
if(s/b[ss-1]%3==1)ans=max(ans,dp(xx,yy,hp-1,s));
if(s/b[ss-1]%3==0)
ans=max(ans,dp(xx,yy,hp-1,s+b[ss-1])*g[s][ss]
+dp(xx,yy,hp,s+b[ss-1]*2)*(1-g[s][ss]));
}
}
return f[x][y][hp][s]=ans;
}
int main()
{
//freopen("1.in","r",stdin);
gt(n);gt(m);gt(k);gt(H);
rep(1,n,i)
{
gc(a[i]);
rep(1,m,j)if(a[i][j]=='$')s1=i,s2=j;
}
maxx=1<<k;--maxx;b[0]=1;
rep(0,maxx,i)get(w[i]),ans+=w[i];
rep(1,k,i)b[i]=b[i-1]*3;
maxx1=b[k]-1;
rep(0,maxx1,i)
{
//0表示未知 1表示有毒 2表示无害.
int num=0;
rep(0,maxx,w1)//0表示无害 1表示有毒
{
int flag=0;
rep(1,k,w2)
{
if(i/b[w2-1]%3==0)continue;
if(i/b[w2-1]%3==1&&(w1>>w2-1&1))continue;
if(i/b[w2-1]%3==2&&!(w1>>w2-1&1))continue;
flag=1;
}
if(flag)continue;
num+=w[w1];
rep(1,k,j)
{
if(i/b[j-1]%3==1&&(w1>>j-1&1))continue;
if(i/b[j-1]%3==2&&!(w1>>j-1&1))continue;
if(i/b[j-1]%3==0)if(w1>>j-1&1)g[i][j]+=w[w1];
}
}
rep(1,k,j)
{
if(i/b[j-1]%3==1)g[i][j]=1;
if(i/b[j-1]%3==2)g[i][j]=0,cc[i]|=(1<<j-1);
if(i/b[j-1]%3==0)g[i][j]/=num;
}
}
prepare();
printf("%.3lf",dp(s1,s2,H,0));
return 0;
}

P2489 [SDOI2011]迷宫探险 概率dp的更多相关文章

  1. 【BZOJ2246】[SDOI2011]迷宫探险(搜索,动态规划)

    [BZOJ2246][SDOI2011]迷宫探险(搜索,动态规划) 题面 BZOJ 洛谷 题解 乍一看似乎是可以求出每个东西是陷阱的概率,然而会发现前面走过的陷阱是不是陷阱实际上是会对当前状态产生影响 ...

  2. BZOJ2246 [SDOI2011]迷宫探险 【记忆化搜索dp + 概率】

    题目 输入格式 输出格式 仅包含一个数字,表示在执行最优策略时,人物活着走出迷宫的概率.四舍五入保留3位小数. 输入样例 4 3 3 2 .$. A#B A#C @@@ 143 37 335 85 9 ...

  3. BZOJ 2246 [SDOI2011]迷宫探险 ——动态规划

    概率DP 记忆化搜索即可,垃圾数据,就是过不掉最后一组 只好打表 #include <cstdio> #include <cstring> #include <iostr ...

  4. BZOJ.2246.[SDOI2011]迷宫探险(DP 记忆化搜索 概率)

    题目链接 求最大的存活概率,DP+记忆化. 用f[s][x][y][hp]表示在s状态,(x,y)点,血量为hp时的存活概率. s是个三进制数,记录每个陷阱无害/有害/未知. 转移时比较容易,主要是在 ...

  5. BZOJ2707 [SDOI2012]走迷宫 【概率dp + tarjan + 高斯消元】

    题目 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的 ...

  6. BZOJ 2246 [SDOI2011]迷宫探险 (记忆化搜索)

    题目大意:太长了,略 bzoj luogu 并没有想到三进制状压 题解: 3进制状压陷阱的状态,0表示这种陷阱的状态未知,1已知危险,2已知不危险 然后预处理出在当前状态下,每种陷阱有害的概率,设为$ ...

  7. 【Luogu】P2489迷宫探险(概率DP)

    题目链接 设f[i][j][k][l]是当前在(i,j),对陷阱的了解状态为k(0表示了解该陷阱为无危险,1表示了解该陷阱有危险,2不了解),l表示当前血,走出迷宫的概率 dfsDP即可. 注意随时更 ...

  8. hdu 4035 2011成都赛区网络赛E 概率dp ****

    太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...

  9. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

随机推荐

  1. 微信h5页面下拉露出网页来源的解决办法

    微信h5页面下拉露出网页来源的解决办法:将document的touchmove事件禁止掉 //禁止页面拖动 document.addEventListener('touchmove', functio ...

  2. 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏

    题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...

  3. Python入门002

    1.编程语言介绍 分类:机器语言汇编语言高级语言(编译型.解释型号) 总结:#1.执行效率:机器语言>汇编语言>高级语言(编译型>解释型) #2.开发效率:机器语言<汇编语言& ...

  4. [JAVA]使用字节流拷贝文件

    import java.io.*; /** * @Description: * @projectName:JavaTest * @see:PACKAGE_NAME * @author:郑晓龙 * @c ...

  5. 浏览器如何解析css选择器?

    浏览器会『从右往左』解析CSS选择器. 我们知道DOM Tree与Style Rules合成为 Render Tree,实际上是需要将Style Rules附着到DOM Tree上, 因此需要根据选择 ...

  6. linux专题(七):账号管理

    http://dwz.date/UDf 简介 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账 ...

  7. Mariadb之主从复制的读写分离

    首先我们来回顾下代理的概念,所谓代理就是指的是一端面向客户端,另外一端面向服务端,代理客户端访问服务端,我们把这种代理叫正向代理:代理服务端响应客户端我们叫做反向代理,这个我们在之前nginx系列博客 ...

  8. Iphone上对于动态生成的html元素绑定点击事件$(document).click()失效解决办法

    在Iphone上,新生成的DOM元素不支持$(document).click的绑定方法,该怎么办呢? 百度了N久都没找到解决办法,在快要走投无路之时,试了试Google,我去,还真找到了,歪国人就是牛 ...

  9. 【Nginx】如何按日期分割Nginx日志?看这一篇就够了!!

    写在前面 Nginx是没有以日期格式作为文件名来存储的,也就是说,Nginx不像Tomcat,每天自动生成一个日志文件,所有的日志都是以一个名字来存储,时间久了日志文件会变得很大.这样非常不利于分析. ...

  10. Halcon一维测量官方案例解析

    下面的例子简要介绍了如何使用HALCON的一维测量工具.最长的部分是预处理和后处理:测量本身只包括两个操作符调用. 测量保险丝-fuse 预处理主要是测量线的生成.在示例程序中,这个步骤是通过将测量对 ...