4.9 省选模拟赛 圆圈游戏 树形dp set优化建图


由于圆不存在相交的关系 所以包容关系形成了树的形态 其实是一个森林 不过加一个0点 就变成了树。
考虑对于每个圆都求出最近的包容它的点 即他的父亲。然后树形dp即可。暴力建图n^2.
const int MAXN=100010;
int n,m,len;
struct wy
{
ll x,y,r,w;
inline int friend operator <(wy a,wy b){return a.r<b.r;}
}t[MAXN];
int f[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
inline db dist(int x,int y){return sqrt((pf(t[x].x-t[y].x)+pf(t[x].y-t[y].y))*1.0);}
inline void dp(int x)
{
f[x]=t[x].w;
int sum=0;
go(x)
{
dp(tn);
sum+=f[tn];
}
f[x]=max(f[x],sum);
}
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
int main()
{
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
get(n);
rep(1,n,i)
{
ll x,y,r,w;
get(x);get(y);
get(r);get(w);
t[i]=(wy){x,y,r,w};
}
sort(t+1,t+1+n);
rep(1,n,i)//对于每个i找到一个最小的j.
{
db minn=INF;int p=0;
rep(i+1,n,j)
{
db d=dist(i,j);
if(t[j].r-t[i].r-d<0)continue;
if(t[j].r-t[i].r-d<minn)
{
minn=t[j].r-t[i].r-d;
p=j;
}
}
add(p,i);
}
dp(0);put(f[0]);return 0;
}
考虑优化建图 一个思路 把所有的边都连上 然后topsort建图 但是这并不能线段树优化建图什么的。
或者直接对于每个圆找到离自己最近的圆然后判断关系连边。
对于后者 可以考虑以扫描线的方式建图 对于每个圆我们都在左边插入 右边删除。
在插入的时候寻找父亲 可以发现此时圆对于离自己最近的圆要么是包含的 要么是兄弟。
对于前者直接找到了父亲 对于后者 兄弟的父亲就是自己的父亲。
考虑找到最近的圆可以使用圆的上半部分来判断 对于上半部分找到自己左端点离自己最近的圆弧 如果是下半圆弧就是兄弟 上半圆弧那么必然是父亲。
用set维护距离 可以发现这些圆弧的相对位置不变 所以总复杂度nlogn.
const ll MAXN=200010,maxn=3000010;
ll n,T,cnt,len;
ll f[MAXN];
ll lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
struct wy{ll x,y,z,r,id;}t[MAXN];
struct jl{ll x,y,op;}q[MAXN];
inline ll cmp(jl a,jl b){return a.x<b.x;}
inline void dp(ll x)
{
f[x]=t[x].z;
ll sum=0;
go(x)
{
dp(tn);
sum+=f[tn];
}
f[x]=max(f[x],sum);
}
inline void add(ll x,ll y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
struct data
{
ll id,op;
//data(){};
inline double calc()const
{
if(op)return t[id].y+sqrt((pf(t[id].r)-pf(t[id].x-T))*1.0);
return t[id].y-sqrt((pf(t[id].r)-pf(t[id].x-T))*1.0);
}
inline ll friend operator <(data a,data b)
{
double x=a.calc();db y=b.calc();
if(fabs(y-x)>EPS)return x<y;
if(a.op!=b.op)return a.op<b.op;
return a.id<b.id;
}
};
set<data>s;
set<data>::iterator it;
signed main()
{
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
get(n);
rep(1,n,i)
{
ll x,y,z,r;
get(x);get(y);get(r);get(z);
t[i]=(wy){x,y,z,r};
q[++cnt]=(jl){t[i].x-t[i].r,i,1};
q[++cnt]=(jl){t[i].x+t[i].r,i,-1};
}
sort(q+1,q+1+cnt,cmp);
//rep(1,cnt,i)cout<<q[i].y<<endl;
rep(1,cnt,i)
{
T=q[i].x;
//cout<<(*s.begin()).id<<' '<<(*s.begin()).op<<endl;
if(q[i].op==1)
{
s.insert((data){q[i].y,1});
it=s.find((data){q[i].y,1});
++it;
if(it==s.end())f[q[i].y]=0;
else
{
if((*it).op==0)f[q[i].y]=f[(*it).id];
else f[q[i].y]=(*it).id;
}
s.insert((data){q[i].y,0});
}
else
{
s.erase((data){q[i].y,1});
s.erase((data){q[i].y,0});
}
}
rep(1,n,i)add(f[i],i);
dp(0);put(f[0]);return 0;
}
一些细节:两个圆并列的时候注意让下半圆弧优先 注意距离的计算公式。
4.9 省选模拟赛 圆圈游戏 树形dp set优化建图的更多相关文章
- 4.3 省选模拟赛 序列游戏 dp
可以发现 某一段被删除后状态难以表示 也难以链接起来. 考虑暴力 有40分的状压dp 暴力存状态 然后枚举转移即可.最后注意和f[0]这个状态取max 不然一分都没有. const int MAXN= ...
- 省选模拟赛 4.26 T1 dp 线段树优化dp
LINK:T1 算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了. 容易发现一个性质 那就是同一格子不会被两种以上的颜色染.(颜色就三种. 通过这个性质就可以进行dp了.先按照左端点排序 ...
- 5.29 省选模拟赛 树的染色 dp 最优性优化
LINK:树的染色 考场上以为这道题要爆蛋了 没想到 推出正解来了. 反正是先写了爆搜的 爆搜最近越写越熟练了 容易想到dp 容易设出状态 f[i][j]表示以i为根的子树内白色的值为j此时黑色的值怎 ...
- 5.15 省选模拟赛 容斥 生成函数 dp
LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优 ...
- 4.26 省选模拟赛 T3 状压dp 差分求答案
LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想 ...
- 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat
好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...
- 4.2 省选模拟赛 流浪者 容斥dp
求出期望 所有情况很好搞 C(n+m-2,n-1). 也就是说求出所有情况的和乘以上面总方案的逆元即可. 可以发现所有情况和经过多少个障碍点有关 和所处位置无关. 简单的设f[i]表示从1,1到n,m ...
- Contest Hunter 模拟赛09 C [树形dp+差分]
题面 传送门 思路 又双叒叕是一道差分题我没想出来......记录一下 首先这个"所有祖先都比自己小"等价于"父亲比自己小" 这题的基础dp方程很显然,$dp[ ...
- CSP模拟赛 Repulsed(树形DP)
题面 ⼩ w ⼼⾥的⽕焰就要被熄灭了. 简便起⻅,假设⼩ w 的内⼼是⼀棵 n − 1 条边,n 个节点的树. 现在你要在每个节点⾥放⼀些个灭⽕器,每个节点可以放任意多个. 接下来每个节点都要被分配给 ...
随机推荐
- django 缓存(memcached)
Django提供了6种缓存方式 开发调试缓存 内存缓存 文件缓存 数据库缓存 Memcache缓存(使用python-memcached模块) Memcache缓存(使用pylibmc模块) 常使用的 ...
- MySQL入门(函数、条件、连接)
MySQL入门(四) distinct:去重 mysql>: create table t1( id int, x int, y int ); mysql>: insert into t1 ...
- 安装visual stdio 2017后依然报错:Unable to find vcvarsall.bat
安装visual stdio 2017后依然报错:Unable to find vcvarsall.bat 解决办法:更新setuptools 原文章:https://blog.csdn.net/wl ...
- java 面向对象(三十二):泛型一 泛型的理解
1.泛型的概念所谓泛型,就是允许在定义类.接口时通过一个标识表示类中某个属性的类型或者是某个方法的返回值及参数类型.这个类型参数将在使用时(例如,继承或实现这个接口,用这个类型声明变量.创建对象时确定 ...
- python面向对象07/异常处理
python面向对象07/异常处理 目录 python面向对象07/异常处理 1. 异常错误分类 2. 什么是异常? 3. 异常处理 4. 为什么要有异常处理 5. 异常处理的两种方式 1.if判断 ...
- 我一天的工作,同事一个小时就做完了?python的应用
" ONE " 众所周知,现在很多行业,都离不开用Excel: 做财务的,要用Excel做报表: 做物流的,会用Excel来跟踪订单情况: 做HR的,会用Excel算工资: 做 ...
- C#中的类与对象
类:说白了就是类型,是对具体事物的一种抽象总结. 对象:一个具体的事物. 类与对象的关系,类实例化就会得到一个对象,同样一个对象也应该属于某一个类.例如张三这个人,他是一个对象,同时他属于人类,在程序 ...
- 7.CSMA协议
载波监听多路访问协议CSMA CS:载波侦听/监听,每一个站在发送数据之前要检测一下总线上是否有其他计算机在发送数据. MA:多点接入,表示许多计算机以多点接入的方式连接在一根总线上 协议思想:发送帧 ...
- 题解 洛谷 P5331 【[SNOI2019]通信】
考虑用费用流解决本题. 每个哨站看作一个点,并将其拆为两个点,建图方式为: \(S \longrightarrow x_i\) 容量为\(1\),费用为\(0\) \(x_i \longrightar ...
- Oracle连接报错之IO异常(The Network Adapter could not establish the connection)
简单介绍:自己封装oracle jdbc的一些常用功能jar包,自己本机玩没啥问题,给别人玩儿,发现总是抛异常 IO异常(The Network Adapter could not establish ...