LINK:path pass i

原本想了一个点分治 yy了半天 发现重复的部分还是很难减掉 况且统计答案的时候有点ex.

(点了别人的提交记录 发现dfs就过了

于是yy了一个容斥 发现可以直接减掉不合法方案。

对于某个点的总方案 :\(1+\frac{n\cdot (n-1)}{2}\)

考虑不合法方案 可以发现在树上 我们按顺序便利树 不合法的情况只有两个颜色相同的点之间的那部分的点对不合法。

以及 最后靠上的那部分点的点对是不合法的。

所以 我们统计这些不合法点对的方案即可。

值得注意的是 最后靠上的那部分要注意减掉。

const int MAXN=200010;
int n,len;
ll ans[MAXN];
int a[MAXN],sz[MAXN],s[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline ll SUM(int x){return (ll)x*(x-1)/2;}
inline void dfs(int x,int father)
{
sz[x]=1;int ss=s[a[x]],pre=s[a[x]];
go(x)
{
if(tn==father)continue;
dfs(tn,x);
sz[x]+=sz[tn];
ans[a[x]]-=SUM(sz[tn]-(s[a[x]]-pre));
pre=s[a[x]];
}
s[a[x]]=ss+sz[x];
}
int main()
{
freopen("1.in","r",stdin);
get(n);
rep(1,n,i)get(a[i]),++ans[a[i]],ans[i]+=SUM(n);
rep(2,n,i)
{
int get(x);int get(y);
add(x,y);add(y,x);
}
dfs(1,0);
rep(1,n,i)ans[i]-=SUM(n-s[i]);
rep(1,n,i)putl(ans[i]);
return 0;
}

4.19 ABC F path pass i 容斥 树形dp的更多相关文章

  1. 【BZOJ-4455】小星星 容斥 + 树形DP

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status] ...

  2. BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)

    传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...

  3. [LOJ2542][PKUWC2018]随机游走(MinMax容斥+树形DP)

    MinMax容斥将问题转化为求x到S中任意点的最小时间. 树形DP,直接求概率比较困难,考虑只求系数.最后由于x节点作为树根无父亲,所以求出的第二个系数就是答案. https://blog.csdn. ...

  4. hdu-5794 A Simple Chess(容斥+lucas+dp)

    题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  5. 浅析容斥和DP综合运用

    浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一 ...

  6. 广东工业大学2016校赛决赛-网络赛 1174 Problem F 我是好人4 容斥

    Problem F: 我是好人4 Description 众所周知,我是好人!所以不会出太难的题,题意很简单 给你n个数,问你1000000000(含1e9)以内有多少个正整数不是这n个数任意一个的倍 ...

  7. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  8. 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]

    传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...

  9. [HAOI2017]方案数[组合计数、容斥、dp]

    题意 题目链接 分析 先考虑没有障碍怎么做,定义 f(i,j,k) 每一维走了 i,j,k 位的方案数,转移乘个组合数即可. 现在多了一些障碍,考虑容斥.实际我们走过的点都有严格的大小关系,所以先把所 ...

随机推荐

  1. 2020最新的Spring Boot 分布式锁的具体实现(内附代码)

    前言 面试总是会被问到有没有用过分布式锁.redis 锁,大部分读者平时很少接触到,所以只能很无奈的回答 "没有".本文通过 Spring Boot 整合 redisson 来实现 ...

  2. WPF 设置帧率

    开始仔细学习WPF了 说是动画不流畅,可以通过设置帧率解决,查了很多,都说设置Timeline.DesiredFrameRateProperty, 但都没说加到哪里,在代码很多地方加上了,统统无效.最 ...

  3. 【asp.net core 系列】15 自定义Identity

    0. 前言 在之前的文章中简单介绍了一下asp.net core中的Identity,这篇文章将继续针对Identity进行进一步的展开. 1. 给Identity添加额外的信息 在<[asp. ...

  4. day71 django收尾

    目录 一.Auth模块 1 简介 2 方法总结 3 如何扩展auth_user表 二.bbs表介绍 1 项目开发流程 2 bbs七张表关系 一.Auth模块 1 简介 在我们创建好一个django项目 ...

  5. day67 前后端数据交互

    目录 一.前后端传输数据的编码格式(contentType) 1 form表单 2 ajax请求 二.ajax发送json格式数据 三.ajax发送文件 四.django自带的序列化组件(drf做铺垫 ...

  6. SQL批量插入数据【万级】

    1.每4000条插入一次 for (int i = 0; i < dt.Rows.Count; i++) { IsTBProductForStockInfo model = new IsTBPr ...

  7. 07 drf源码剖析之节流

    07 drf源码剖析之节流 目录 07 drf源码剖析之节流 1. 节流简述 2. 节流使用 3. 源码剖析 总结: 1. 节流简述 节流类似于权限,它确定是否应授权请求.节流指示临时状态,并用于控制 ...

  8. Swift开发笔记

    Swift开发笔记(一) 刚开始接触XCode时,整个操作逻辑与Android Studio.Visual Studio等是完全不同的,因此本文围绕IOS中控件的设置.事件的注册来简单的了解IOS开发 ...

  9. mysql中常见约束

    #常见约束 /* 含义:一种限制,用于限制表中的数据,为了保证表中的数据的准确和可靠性 分类:六大约束 NOT NULL:非空,用于保证该字段的值不能为空 比如姓名.学号等 DEFAULT:默认,用于 ...

  10. express中是如何处理IP的?

    express获取client_ip req.ip // 获取客户端ip req.ips // 获取请求经过的客户端与代理服务器的Ip列表 查看源码 定义获取ip的入口, // 源码 request. ...