一.知识图谱的简介

1.知识图谱是什么

知识图谱本质上是语义网络(Semantic Network)的知识库

  可以理解为一个关系图网络。

2.什么是图

图(Graph)是由节点(Vertex)和边(Edge)来构成,多关系图一般包含多种类型的节点和多种类型的边。

3.什么是Schema

限定待加入知识图谱数据的格式;相当于某个领域内的数据模型,包含了该领域内有意义的概念类型以及这些类型的属性

二.知识图谱的构建

1.数据来源

结构化数据和非结构化数据,前者可能是本地数据库中的信息,后者主要是在网页上抓取的信息。

2.涉及的技术

命名实体识别,关系抽取等自然语言处理技术。

三.知识图谱的存储

  • 一种是基于RDF的存储;
  • 另一种是基于图数据库的存储。

  RDF一个重要的设计原则是数据的易发布以及共享,图数据库则把重点放在了高效的图查询和搜索上。其次,RDF以三元组的方式来存储数据而且不包含属性信息,但图数据库一般以属性图为基本的表示形式,所以实体和关系可以包含属性,这就意味着更容易表达现实的业务场景。其中Neo4j系统目前仍是使用率最高的图数据库,它拥有活跃的社区,而且系统本身的查询效率高,但唯一的不足就是不支持准分布式。

四.Neo4j的介绍

Neo4j为常用的图数据库之一。

  Neo4j的安装很简单,先到官方网站Neo4j下载,下载完压缩包之后直接解压缩,然后配置好环境变量,可以按照这篇博客的方法https://www.cnblogs.com/jpfss/p/10874303.html。

  之后我们在浏览器内输入http://127.0.0.1:7474/browser/就进入了Neo4j的界面。

五.Neo4j的基本操作

//删库
MATCH (n) DETACH DELETE n
//创建人物结点
CREATE (n:Person {name:'John'}) RETURN n
//创建地区结点
CREATE (n:Location {city:'Miami', state:'FL'})
//创建朋友关系
MATCH (a:Person {name:'Liz'}),
(b:Person {name:'Mike'})
MERGE (a)-[:FRIENDS]->(b)
//创建出生地关系
MATCH (a:Person {name:'John'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1978}]->(b);
MATCH (a:Person {name:'Liz'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1981}]->(b);
//按照出生地查询
MATCH (a:Person)-[:BORN_IN]->(b:Location {city:'Boston'}) RETURN a,b
//查询所有对外有关系的结点和类型
MATCH (a)-[r]->() RETURN a.name, type(r)
//查询所有婚姻关系的结点
MATCH (n)-[:MARRIED]-() RETURN n
//查找某人朋友的朋友
MATCH (a:Person {name:'Mike'})-[r1:FRIENDS]-()-[r2:FRIENDS]-(friend_of_a_friend) RETURN friend_of_a_friend.name AS fofName
//增加或者修改结点属性
MATCH (a:Person {name:'Liz'}) SET a.age=34
//删除结点属性
MATCH (a:Person {name:'Mike'}) SET a.test='test';
MATCH (a:Person {name:'Mike'}) REMOVE a.test;

六.在python中操纵neo4j

1.neo4j模块

  # step 1:导入 Neo4j 驱动包
from neo4j import GraphDatabase
# step 2:连接 Neo4j 图数据库
driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))
# 添加 关系 函数
def add_friend(tx, name, friend_name):
tx.run("MERGE (a:Person {name: $name}) "
"MERGE (a)-[:KNOWS]->(friend:Person {name: $friend_name})",
name=name, friend_name=friend_name)
# 定义 关系函数
def print_friends(tx, name):
for record in tx.run("MATCH (a:Person)-[:KNOWS]->(friend) WHERE a.name = $name "
"RETURN friend.name ORDER BY friend.name", name=name):
print(record["friend.name"])
# step 3:运行
with driver.session() as session:
session.write_transaction(add_friend, "Arthur", "Guinevere")
session.write_transaction(add_friend, "Arthur", "Lancelot")
session.write_transaction(add_friend, "Arthur", "Merlin")
session.read_transaction(print_friends, "Arthur")

注意这里的密码要改成自己的,否则无法正常登陆。运行完上面的脚本后,就出现了如下的结点和边:

2.py2neo模块

# step 1:导包
from py2neo import Graph, Node, Relationship # step 2:构建图
g = Graph("http://localhost:7474",auth=("neo4j","password"))
# step 3:创建节点
tx = g.begin()
a = Node("Person", name="Alice")
tx.create(a)
b = Node("Person", name="Bob")
# step 4:创建边
ab = Relationship(a, "KNOWS", b)
# step 5:运行
tx.create(ab)
tx.commit()

知识图谱和neo4j的基本操作的更多相关文章

  1. 简单的知识图谱,neo4j+python

    因为研究方向是知识图谱,就有兴致想要构建一个简单的知识图谱,就在网上查找了一下,参考了neo4j搭建简单的金融知识图谱的思想,就着手从零开始构建. 1.首先就要考虑数据的获得,因为之前没有接触过爬虫之 ...

  2. 知识图谱实战开发案例剖析-番外篇(1)- Neo4j是否支持按照边权重加粗和大数量展示

    一.前言 本文是<知识图谱实战开发案例完全剖析>系列文章和网易云视频课程的番外篇,主要记录学员在知识图谱等相关内容的学习 过程中,提出的共性问题进行展开讨论.该部分内容原始内容记录在网易云 ...

  3. springboot2.0+Neo4j+d3.js构建知识图谱

    Welcome to the Neo4j wiki! 初衷这是一个知识图谱构建工具,最开始是对产品和领导为了做ppt临时要求配合做图谱展示的不厌其烦,做着做着就抽出一个目前看着还算通用的小工具 技术栈 ...

  4. [知识图谱]Neo4j知识图谱构建(neo4j-python-pandas-py2neo-v3)

    neo4j-python-pandas-py2neo-v3 利用pandas将excel中数据抽取,以三元组形式加载到neo4j数据库中构建相关知识图谱 Neo4j知识图谱构建 1.运行环境: pyt ...

  5. [知识图谱]利用py2neo从Neo4j数据库获取数据

    # -*- coding: utf-8 -*- from py2neo import Graph import json import re class Neo4jToJson(object): &q ...

  6. 知识图谱之图数据库Neo4j

    知识图谱中的知识是通过RDF结构来进行表示的,其基本单元是事实.每个事实是一个三元组(S, P, O),在实际系统中,按照存储方式的不同,知识图谱的存储可以分为基于表结构的存储和基于图结构的存储. 基 ...

  7. ​知识图谱里的知识存储:neo4j的介绍和使用

      一般情况下,我们使用数据库查找事物间的联系的时候,只需要短程关系的查询(两层以内的关联).当需要进行更长程的,更广范围的关系查询时,就需要图数据库的功能. 而随着社交.电商.金融.零售.物联网等行 ...

  8. 仿Neo4j里的知识图谱,利用d3+vue开发的一个网络拓扑图

    项目需要画一个类似知识图谱的节点关系图. 一开始用的是echart画的. 根据https://gallery.echartsjs.com/editor.html?c=xH1Rkt3hkb,成功画出简单 ...

  9. Neo4j学习——基本操作(一)

    由于开始学习知识图谱,因此需要涉及到neo4j的使用一.介绍neo4j是一个图形数据库基于Java开发而成,因此需要配置jvm才可以运行配置请参考我前面的一篇blog:https://www.cnbl ...

随机推荐

  1. 第二篇 Scrum 冲刺博客

    一.站立式会议 1. 会议照片 2. 工作汇报 成员名称 昨日(23日)完成的工作 今天(24日)计划完成的工作 工作中遇到的困难 陈锐基 - 完成个人资料编辑功能- 对接获取表白动态的接口数据并渲染 ...

  2. bootstrap 扩展参数

    后台接受的参数形式 前端加载bootstrap时做的处理

  3. mysql 基础入门 单表查询

    单表查询 select 表头,表头 as 别名 ,表头(+-*/的运算) from table_a 1.条件查询 where + 条件 <> , != 不等于 = 等于,也可以表示字符串值 ...

  4. Java安全之原生readObject方法解读

    Java安全之原生readObject方法解读 0x00 前言 在上篇文章分析shiro中,遇到了Shiro重写了ObjectInputStream的resolveClass导致的一些基于Invoke ...

  5. 思想无语言边界:以 cglib 介绍 AOP 在 java 的一个实现方式

    0. 前言 上接:基于 Source Generators 做个 AOP 静态编织小实验 作为第三篇,我们基于cglib在java做一个简单的aop例子, 以此简单作为例子说一个思路在什么样的语言里面 ...

  6. Spark Connector Reader 原理与实践

    本文主要讲述如何利用 Spark Connector 进行 Nebula Graph 数据的读取. Spark Connector 简介 Spark Connector 是一个 Spark 的数据连接 ...

  7. react第八单元(什么是纯函数-组件的性能优化-pureComponent-组件性能优化的原理)

    课程目标 理解纯函数 熟练掌握组件性能优化的几种技巧 pureComponent和Component的区别 #知识点 一个函数的返回结果只依赖于它的参数,并且在执行过程里面没有副作用,我们就把这个函数 ...

  8. [日常摸鱼]HDU1348Wall-凸包

    我学习进度慢得连我自己都怕- 题意:大概给$n$个点搞出它的凸包,然后还要在凸包外弄一层厚为$l$的东西,求这个东西的周长 我个滞涨居然把pi开成了int-搞了一个晚上才看见 凸包直接求,因为是凸多边 ...

  9. matplotlib的学习1-为什么学他

    1.是一个非常强大的python画图的一个工具 2.手中有很多的数据,但是不知道如何呈现 matplotlib->能画出 线图; 散点图; 等高线图; 条形图; 柱状图; 3D 图形, 甚至是图 ...

  10. angular 8 表单带文件上传接口

    <div id="homework"> <form (ngSubmit)="doSubmit()" enctype="multipa ...