2020 CCPC Wannafly Winter Camp Day1 C. 染色图

定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v)。

定义函数 g(n,k) 的值为所有包含 n 个点的无自环、无重边的 k 可染色无向图中的边数最大值。举例来说,g(3,1)=0,g(3,2)=2,g(3,3)=3。

现在给出三个整数 n,l,r,你需要求解:\((\sum_{i=l}^rg(n,i))mod998244354\)

输入格式:

第一行输入一个整数 \(T(1≤T≤10^3)\),表示数据组数。

对于每组数据,输入三个整数 \(n,l,r(1≤l≤r≤n≤10^9)\)。

输出格式

对于每组数据,输出一行一个整数表示答案。

输入样例:

  1. 5
  2. 3 1 1
  3. 3 2 2
  4. 5 2 4
  5. 10 3 9
  6. 1000 123 789

输出样例:

  1. 0
  2. 2
  3. 23
  4. 280
  5. 332539617

时间限制: 1000 ms

内存限制: 256 MB

代码长度限制: 16 KB

分析

n个点,m种颜色,可以分成\(m\)堆,每堆的颜色都是相同的,这样就会有\(n\%m\)堆有\(n/m+1\)个点,\(m-n\%m\)堆有\(n/m\)个点,堆与堆之间的点都是要两两连线的,而对于堆中的点,是不能有连线的,所以就是一个大的完全图减去m个小的完全图。将公式推出来之后,根据数据范围可知不可暴力,可以对每个\(n/m\)的取值,求出对应的\([l,r]\),然后进行计算。

\[{n \choose 2} - n\%m\times{\lceil{n\over m}\rceil \choose 2}-(m-n\%m)\times {\lfloor{n\over m}\rfloor \choose 2}
\]
\[\Downarrow
\]
\[{n \choose 2} - \lfloor {n\over m}\rfloor \times n + \lfloor {n \over m} \rfloor * (\lfloor {n\over m}\rfloor + 1)*m / 2
\]

枚举\(\lfloor {n\over m} \rfloor\)的值,求出对应的[l,r]

  1. const int mod = 998244353;
  2. int T;
  3. ll n,l,r;
  4. int main()
  5. {
  6. cin >> T;
  7. while(T--){
  8. cin >> n >> l >> r;
  9. ll res = (r - l + 1) * (n * (n-1) / 2 % mod)%mod;
  10. for(int i = l;i <= r;i = d+1){
  11. ll tmp = n / i;
  12. ll d = n / i ? min(n / tmp, r) : r; //求出商为tmp的r
  13. ll num = d - i + 1; //区间长度
  14. res = (res - num * tmp % mod * n % mod + tmp * (tmp + 1) / 2 % mod * num % mod * (d + i) / 2 + mod) % mod;
  15. }
  16. cout << res << endl;
  17. }
  18. return 0;
  19. }

2020 CCPC Wannafly Winter Camp Day1 C. 染色图的更多相关文章

  1. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  2. 2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)

    题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...

  3. 2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信

    题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...

  4. 2020 CCPC Wannafly Winter Camp Day1-F-乘法

    题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...

  5. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  6. 2019 wannafly winter camp

    2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...

  7. 2019 wannafly winter camp day 3

    2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...

  8. Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学

    神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...

  9. Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学

    于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...

随机推荐

  1. Lock锁 精讲

    1.为什么需要Lock 为什么synchronized不够用,还需要Lock Lock和synchronized这两个最常见的锁都可以达到线程安全的目的,但是功能上有很大不同. Lock并不是用来代替 ...

  2. 十八般武艺玩转GaussDB(DWS)性能调优:路径干预

    摘要:路径生成是表关联方式确定的主要阶段,本文介绍了几个影响路径生成的要素:cost_param, scan方式,join方式,stream方式,并从原理上分析如何干预路径的生成. 一.cost模型选 ...

  3. Flutter 基础组件:单选框和复选框

    前言 Material组件库中提供了Material风格的单选开关Switch和复选框Checkbox,虽然它们都是继承自StatefulWidget,但它们本身不会保存当前选中状态,选中状态都是由父 ...

  4. 基于 MPI 的快速排序算法的实现

    完整代码: #include <iostream> #include <cstdlib> #include <ctime> #include <algorit ...

  5. Docker Harbor 高可用 1.7.5版本(七)

    环境说明: node1 10.10.5.135 仓库 1 node2 10.10.5.136 仓库 2 node3 10.10.5.137 客户端 实验内容: Harbor 可以在两台主机之间相互同步 ...

  6. VBA实现相同行合并

    帮人捣鼓了个VBA代码用来实现多行合并,具体需求为:列2/列3/列4 相同的情况下,则对应的行合并为一行,且列1用空格隔开,列5则相加: (对大多数办公室职员,VBA还算是提高效率的一个利器吧) 最终 ...

  7. Puzzle (II) UVA - 519

    题目链接: https://vjudge.net/problem/UVA-519 思路: 剪枝+回溯 这个题巧妙的是他按照表格的位置开始搜索,也就是说表格是定的,他不断用已有的图片从(0,0)开始拼到 ...

  8. 1.搭建Hadoop实验平台

    节点功能规划 操作系统:CentOS7.2(1511) Java JDK版本:jdk-8u65-linux-x64.tar.gz Hadoop版本:hadoop-2.8.3.tar.gz 下载地址: ...

  9. 使用Spring的RestTemplate进行接口调用

    引自:http://www.zimug.com/ 1.常见的http服务的通信方式 经常使用的方式有HttpClient.OkHttp.RestTemplate.其中RestTemplate是一种更优 ...

  10. 说说C# 8.0 新增功能Index和Range的^0是什么?

    前言 在<C# 8.0 中使用 Index 和 Range>这篇中有人提出^0是什么意思?处于好奇就去试了,结果抛出异常.查看官方文档说^0索引与 sequence[sequence.Le ...