2020 CCPC Wannafly Winter Camp Day1 C. 染色图

定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v)。

定义函数 g(n,k) 的值为所有包含 n 个点的无自环、无重边的 k 可染色无向图中的边数最大值。举例来说,g(3,1)=0,g(3,2)=2,g(3,3)=3。

现在给出三个整数 n,l,r,你需要求解:\((\sum_{i=l}^rg(n,i))mod998244354\)

输入格式:

第一行输入一个整数 \(T(1≤T≤10^3)\),表示数据组数。

对于每组数据,输入三个整数 \(n,l,r(1≤l≤r≤n≤10^9)\)。

输出格式

对于每组数据,输出一行一个整数表示答案。

输入样例:

5
3 1 1
3 2 2
5 2 4
10 3 9
1000 123 789

输出样例:

0
2
23
280
332539617

时间限制: 1000 ms

内存限制: 256 MB

代码长度限制: 16 KB

分析

n个点,m种颜色,可以分成\(m\)堆,每堆的颜色都是相同的,这样就会有\(n\%m\)堆有\(n/m+1\)个点,\(m-n\%m\)堆有\(n/m\)个点,堆与堆之间的点都是要两两连线的,而对于堆中的点,是不能有连线的,所以就是一个大的完全图减去m个小的完全图。将公式推出来之后,根据数据范围可知不可暴力,可以对每个\(n/m\)的取值,求出对应的\([l,r]\),然后进行计算。

\[{n \choose 2} - n\%m\times{\lceil{n\over m}\rceil \choose 2}-(m-n\%m)\times {\lfloor{n\over m}\rfloor \choose 2}
\]
\[\Downarrow
\]
\[{n \choose 2} - \lfloor {n\over m}\rfloor \times n + \lfloor {n \over m} \rfloor * (\lfloor {n\over m}\rfloor + 1)*m / 2
\]

枚举\(\lfloor {n\over m} \rfloor\)的值,求出对应的[l,r]

const int mod = 998244353;
int T;
ll n,l,r;
int main()
{
cin >> T;
while(T--){
cin >> n >> l >> r;
ll res = (r - l + 1) * (n * (n-1) / 2 % mod)%mod;
for(int i = l;i <= r;i = d+1){
ll tmp = n / i;
ll d = n / i ? min(n / tmp, r) : r; //求出商为tmp的r
ll num = d - i + 1; //区间长度
res = (res - num * tmp % mod * n % mod + tmp * (tmp + 1) / 2 % mod * num % mod * (d + i) / 2 + mod) % mod;
}
cout << res << endl;
}
return 0;
}

2020 CCPC Wannafly Winter Camp Day1 C. 染色图的更多相关文章

  1. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  2. 2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)

    题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...

  3. 2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信

    题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...

  4. 2020 CCPC Wannafly Winter Camp Day1-F-乘法

    题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...

  5. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  6. 2019 wannafly winter camp

    2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...

  7. 2019 wannafly winter camp day 3

    2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...

  8. Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学

    神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...

  9. Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学

    于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...

随机推荐

  1. NOIP初赛篇——09原码、反码和补码

    一.数的原码.补码和反码表示 机器数和真值 ​ 在计算机中,表示数值的数字符号只有0和1两个数码,我们规定最高位为符号位,并用0表示正符号,用1表示负符号.这样,机器中的数值和符号全"数码化 ...

  2. 【Flutter】可滚动组件之SingleChildScrollView

    前言 SingleChildScrollView类似于Android中的ScrollView,它只能接收一个子组件. 接口描述 const SingleChildScrollView({ Key ke ...

  3. mybatis入门教程之搭建一个简单的mybatis项目并启动它

    一.准备条件: 1.依赖jar包:mybatis核心包(必须).lombok插件包(非必须)以及MySQL数据库连接驱动包(必须) <dependency> <groupId> ...

  4. MySQL select if 查询最后一个主键 id

    查询最后一个主键id SELECT IF(MAX(id) IS NULL, 0, MAX(id)) AS maxid FROM users; 查询最小的主键id SELECT IF(MIN(id) I ...

  5. 【Linux】find查找空文件夹

    linux下批量删除空文件(大小等于0的文件)的方法 find . -name "*" -type f -size 0c | xargs -n 1 rm -f 就是删除1k大小的文 ...

  6. ctfhub技能树—文件上传—.htaccess

    首先介绍一下.htaccess(来自百度百科) .htaccess文件(或者"分布式配置文件"),全称是Hypertext Access(超文本入口).提供了针对目录改变配置的方法 ...

  7. os-hackos-3-docker提权

    0x00 cewl http://192.168.43.179/websec/爬取页面所有的单词做成字典 hydra -l contact@hacknos.com -P cewl.txt 192.16 ...

  8. java 文件上传的那些事

    文件上传 逻辑 @Value("${sava_path}") private String sava_path; @Override public String saveFile( ...

  9. Kubernetes 开船记-脚踏两只船:用 master 服务器镜像克隆出新集群

    自从2020年2月23日 园子全站登船 之后,我们一边感叹"不上船不知道,一上船吓一跳" -- kubernetes 比 docker swarm 强大太多,一边有一个杞人忧天的担 ...

  10. 1V升3V芯片,1V升3.3V芯片,大电流的,低功耗

    一般来说,1V的电压实在很低了,即使是干电池的话,再1V时,也是基本属于没电状态了.还有一种是干电池输出电流大时,也会把干电池的电压从1.5V拉低到1V左右. 更多的是客户对于1V时要能升到3V或者3 ...