BZOJ1951 古代猪文 【数论全家桶】
BZOJ1951 古代猪文
题目链接:
题意:
计算\(g^{\sum_{k|n}(^n_k)}\%999911659\)
\(n\le 10^9, g\le 10^9\)
题解:
首先,根据扩展欧拉定理,\(a^b≡a^{b\%\phi(p)}\ (MOD\ p), gcd(a,p)=1\)
可以把要计算的式子降幂得到:\(g^{(\sum_{k|n}(^n_k))\%999911658}\%999911659\)
接下来我们需要计算的就是\((\sum_{k|n}(^n_k))\%999911658\)
但是要是直接计算是不现实的,一是组合数要用到\(n\)的阶乘,而\(n\)有\(10^9\)的大小,其次要算的阶乘的逆元也不一定存在
可以发现\(999911658\)可以拆分成\(2\times 3\times 4679\times 35617\)
所以我们可以计算出\(\sum_{k|n}(^n_k)\)在四个质数下的模数,然后用中国剩余定理来合并
也就是说,求出来在四个模数下的值\(r_1,r_2,r_3,r_4\)之后,得到一个线性方程组:
x≡r_1\ (MOD\ 2) \\
x≡r_2\ (MOD\ 3) \\
x≡r_3\ (MOD\ 4679) \\
x≡r_4\ (MOD\ 35617)
\end{cases}\]
用中国剩余定理合并一下就可以得到\(x\)在模\(999911658\)下的值了
然后用快速幂就可以计算出最后的答案
而拆分后的质数都比较小,所以可以用卢卡斯定理来算在小质数下的组合数
view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
typedef long long int LL;
const LL MOD = 999911659LL;
const int MAXN = 4e4+7;
LL fact[MAXN];
vector<LL> P,F;
LL n, g;
void preprocess(){
LL x = MOD - 1;
for(int i = 2; i * i <= x; i++){
if(x%i==0){
P.push_back(i);
while(x%i==0) x /= i;
}
}
if(x!=1) P.push_back(x);
for(int i = 1; i * i <= n; i++){
if(n%i==0){
F.push_back(i);
if(i!=n/i) F.push_back(n/i);
}
}
}
LL ksm(LL a, LL b, LL p){ // a^b%p
LL ret = 1;
while(b){
if(b&1) ret = ret * a % p;
b >>= 1;
a = a * a % p;
}
return ret;
}
void exgcd(LL a, LL b, LL &x, LL &y){ //ax + by = 1
if(!b){ x = 1, y = 0; return; }
exgcd(b,a%b,y,x);
y -= a / b * x;
}
void calComb(LL p){ // 预处理组合数
fact[0] = 1;
for(int i = 1; i < p; i++) fact[i] = fact[i-1] * i % p;
}
LL inv(LL a, LL p){ // a在模p意义下的逆元
LL x, y;
exgcd(a,p,x,y);
return (x%p)+p;
}
LL C(LL n, LL m, LL p){ return n<m?0:fact[n] * inv(fact[m],p) % p * inv(fact[n-m],p) % p; } // 组合数C(n,m)%p
LL lucas(LL n, LL m, LL p){ // 卢卡斯计算 C(n,m) % p
LL ret = 1;
while(n and m){
int nn = n % p, mm = m % p;
if(mm>nn) return 0LL;
ret = ret * C(nn,mm,p) % p;
n /= p; m /= p;
}
return ret;
}
LL CRT(vector<LL> R, vector<LL> P){
LL ret = 0;
for(int i = 0; i < (int)R.size(); i++)
ret = (ret + R[i] * (MOD-1)/P[i] % (MOD-1) * inv((MOD-1)/P[i],P[i])) % (MOD-1);
return ret;
}
LL solve(){
preprocess();
vector<LL> R;
for(int p : P){
calComb(p);
LL r = 0;
for(int f : F) r = (r + lucas(n,f,p)) % p;
R.push_back(r);
}
LL pw = CRT(R,P);
return ksm(g,pw,MOD);
}
int main(){
scanf("%lld %lld",&n,&g);
g %= MOD;
if(g == 0) cout << 0 << endl;
else if(g == 1) cout << 1 << endl;
else cout << solve() << endl;
return 0;
}
BZOJ1951 古代猪文 【数论全家桶】的更多相关文章
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...
- luogu 2480 古代猪文 数论合集(CRT+Lucas+qpow+逆元)
一句话题意:G 的 sigma d|n C(n d) 次幂 mod 999911659 (我好辣鸡呀还是不会mathjax) 分析: 1.利用欧拉定理简化模运算 ,将上方幂设为x,则x=原式mod ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】古代猪文(CRT,卢卡斯定理)
[BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 【题解】古代猪文 [SDOI2010] [BZOJ1951] [P2480]
[题解]古代猪文 [SDOI2010] [BZOJ1951] [P2480] 在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心 ...
随机推荐
- 基于Python的接口自动化-读写excel文件
引言 使用python进行接口测试时常常需要接口用例测试数据.断言接口功能.验证接口响应状态等,如果大量的接口测试用例脚本都将接口测试用例数据写在脚本文件中,这样写出来整个接口测试用例脚本代码将看起来 ...
- python_字典(dict)
dict 一.结构: info = { "key":"value", "key":"value" } print(inf ...
- 【Linux】使用grep快速比较两个文件不同
两个文件的比较,会有同学说使用diff,和vimdiff就可以快速比较,为什么还要使用grep呢? 有些时候,diff和vimdiff的时候环境不符合,这样的情况,就可以使用grep来解决这个问题. ...
- MySQL查询截取分析
一.查询优化 1,mysql的调优大纲 慢查询的开启并捕获 explain+慢SQL分析 show profile查询SQL在Mysql服务器里面的执行细节和生命周期情况 SQL数据库服务器的参数调优 ...
- 攻防世界 - Web(三)
PHP2: 1.进入页面,进行抓包或后台扫描都没有什么发现,然后网上查一波wp,发现是关于.phps文件,进入index.phps,弹出一段代码,查看源代码, <?php if("ad ...
- 跨平台导PDF,结合wkhtmltopdf很顺手
前言 好东西要分享,之前一直在使用wkhtmltopdf进行pdf文件的生成,常用的方式就是先安装wkhtmltopdf,然后在程序中用命令的方式将对应的html生成pdf文件,简单而且方便:但重复的 ...
- Core3.1 微信v3 JSAPI支付
1.前言 "小魏呀,这个微信支付还要多久?","快了快了老板,就等着最后一步了...","搞快点哈,就等着上线呢","...... ...
- MYSQL面试题-索引
MYSQL面试题-索引 引自B站up编程不良人:https://www.bilibili.com/video/BV19y4y127h4 一.什么是索引? 官方定义:索引是一种帮助mysql提高查询效率 ...
- 使用存储过程在mysql中批量插入数据
一.在mysql数据库中创建一张表test DROP TABLE IF EXISTS `test`; CREATE TABLE `test` ( `id` INT (11), `name` VARCH ...
- GlusterFS分布式存储系统复制集更换故障Brick操作记录
场景: GlusterFS 3节点的复制集,由于磁盘故障,其中一个复制集需要重装系统,所以需要重装glusterfs并将该节点加入glusterfs集群 一. 安装GlusterFS 首先在重装系统节 ...