参考博文:https://blog.csdn.net/hjimce/article/details/50187029

R-CNN(Regions with CNN features)--2014年提出

算法流程

  1.输入一张图片,通过selective search算法找出2000个可能包括检测目标的region proposal(候选框)

  2.采用CNN提取候选框中的图片特征(AlexNet输出特征向量维度为4096)

  3.使用SVM对特征向量分类

  4.bounding-box regression修正候选框位置

(一)候选框搜索

  通过selective search算法可以搜索出2000个大小不同的矩形框,得到对应的坐标

  遍历候选框:

    对候选框进行筛选,去掉重复的、太小的方框等,假设剩余1500个。截取剩余的方框对应的图片,得到了1500张图片

    由于CNN对输入图片的大小有要求,需要对以上图片进行缩放处理,方法有:各向异性缩放、各向同性缩放。缩放到CNN要求的大小

    根据IOU对每一张图片进行标注,如IOU>0.5标注为目标类别(正样本),否则为背景类别(负样本)

  我的理解:每一张原始图片都会生成1500个训练样本

(二)CNN提取特征

  可选网络结构:AlexNet,Vgg-16

  预训练:有监督预训练

    物体检测的一个难点在于,物体标签训练数据少,如果要直接采用随机初始化CNN参数的方法,那么目前的训练数据量是远远不够的。

    这种情况下,最好的是采用某些方法,把参数初始化了,然后在进行有监督的参数微调,文献采用的是有监督的预训练。

    有监督预训练,我们也可以把它称之为迁移学习。比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,

    用于人脸的年龄识别。然后当你遇到新的项目任务是:人脸性别识别,那么这个时候你可以利用已经训练好的年龄识别CNN模型,

    去掉最后一层,然后其它的网络层参数就直接复制过来,继续进行训练。这就是所谓的迁移学习,说的简单一点就是把一个任务训练好的参数,

    拿到另外一个任务,作为神经网络的初始参数值,这样相比于你直接采用随机初始化的方法,精度可以有很大的提高。

    图片分类标注好的训练数据非常多,但是物体检测的标注数据却很少,如何用少量的标注数据,训练高质量的模型,这就是文献最大的特点,

    这篇paper采用了迁移学习的思想。文献就先用了ILSVRC2012这个训练数据库(这是一个图片分类训练数据库),先进行网络的图片分类训练。

    这个数据库有大量的标注数据,共包含了1000种类别物体,因此预训练阶段cnn模型的输出是1000个神经元,

    或者我们也直接可以采用Alexnet训练好的模型参数。

  fine-tuning

    将最后一层的输出层单元数修改为目标检测的类别数+1,多出的一类为背景。输出层参数采用随机初始化,之前的参数不变。继续对网络进行训练。

(三)训练SVM

  CNN最后的softmax层可以做分类,在论文中为什么要把softmax层换成SVM进行分类?

    因为SVM和CNN分类时的正负样本定义不同,导致CNN+softmax输出比SVM精度要低。由于CNN容易过拟合,需要大量的训练样本,

    所以CNN的样本标注比较宽松,IOU>0.5即标记为正样本。SVM适用于小样本训练,对样本的IOU要求较高,在训练时,IOU>0.7时标记为正样本。

  由于SVM是二分类器,因此对每一个类别都需要训练一个SVM

(四)Bounding Box Regression--边框回归

  详解

  

  任务描述:G为目标边框(人为标注),P为网络计算得到的边框。边框回归的任务是计算从P到G^的映射f,使P经过映射以后得到与真实窗口G

      更接近的G^

  思路:平移+尺度缩放

  输入:(训练时)CNN提取到的该边框的特征+Ground Truth即G的坐标

     (预测时)CNN提取到的该边框的特征

  输出:需要进行的平移量和尺度缩放量,即P到G^的映射,包括4个值:Δx,Δy,Sw,Sh

  通过计算得到新的回归框

  

    

  

  

目标检测算法(一):R-CNN详解的更多相关文章

  1. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

  2. 目标检测算法之R-CNN算法详解

    R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测 ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. 深度剖析目标检测算法YOLOV4

    深度剖析目标检测算法YOLOV4 目录 简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读 yo ...

  5. 如何使用 pytorch 实现 SSD 目标检测算法

    前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...

  6. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  7. FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019

    论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测 ...

  8. CNN详解

    CNN详解 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要就是卷积神经网络(CNN) ...

  9. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  10. FAIR开源Detectron:整合全部顶尖目标检测算法

    昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...

随机推荐

  1. Arduboy基本操作(二)

    Arduboy基本操作(二) 方向键控制物体移动 #include<Arduboy.h> Arduboy arduboy; int i,j; void setup() { arduboy. ...

  2. 使用C#对华为IPC摄像头二次开发(一)

    开发环境: 操作系统:Win10 x64专业版2004 开发工具:VS2019 16.7.2 目标平台:x86 首先去下载IPC SDK(点击下载,需要华为授权账户.) 新建一个WPF的项目,Fram ...

  3. GitBook 常用插件

    目录 必看说明 插件说明 page-treeview 目录 code 代码 pageview-count 阅读量计数 popup 图片点击查看 tbfed-pagefooter 页面添加页脚(简单版) ...

  4. HTTP系列之跨域资源共享机制(CORS)介绍

    前言 本文将继续解析详解HTTP系列1中的请求/ 响应报文的首部字段,今天带来的跨域资源共享(CORS)机制,具体内容包括CORS的原理.流程.实战,希望能给大家带来收获! CORS简介 跨域资源共享 ...

  5. 分享一个登录页面(前端框架layui)-20200318

    效果图 对该页面的总结: 1.前端框架layui layui官网:https://www.layui.com/,下载之后,简单配置就可使用 2.layui模块引用与使用的方式 <script&g ...

  6. SEO诊断方案以及执行方案

    http://www.wocaoseo.com/thread-127-1-1.html 今天和大家一起讨论一下SEO诊断方案以及SEO执行方案要怎么写,主要从哪些方面进行呢,做SEO的朋友们一直在探讨 ...

  7. 如何解决 iframe 无法触发 clickOutside

    注:(1)非原创,来自https://blog.csdn.net/weixin_33985679/article/details/89699215.https://zhuanlan.zhihu.com ...

  8. vue cli3如何引入全局less变量

    最近在项目中需要写一个全局的style.less,然后在各组件中可以直接调用: 1.在assets下创建一个less文件: 2.安装style-resources-loader (npm i styl ...

  9. JS 替换日期的横杠为斜杠

    例如1: <script type="text/javascript">      var dt = "2010-01-05";           ...

  10. 利用OpenCV进行H264视频编码的简易方式

    在Python下,利用pip安装预编译的opencv库,并实现h264格式的视频编码. 1. 安装OpenCV $ pip install opencv-python 建议在python虚拟环境下安装 ...