参考博文:https://blog.csdn.net/hjimce/article/details/50187029

R-CNN(Regions with CNN features)--2014年提出

算法流程

  1.输入一张图片,通过selective search算法找出2000个可能包括检测目标的region proposal(候选框)

  2.采用CNN提取候选框中的图片特征(AlexNet输出特征向量维度为4096)

  3.使用SVM对特征向量分类

  4.bounding-box regression修正候选框位置

(一)候选框搜索

  通过selective search算法可以搜索出2000个大小不同的矩形框,得到对应的坐标

  遍历候选框:

    对候选框进行筛选,去掉重复的、太小的方框等,假设剩余1500个。截取剩余的方框对应的图片,得到了1500张图片

    由于CNN对输入图片的大小有要求,需要对以上图片进行缩放处理,方法有:各向异性缩放、各向同性缩放。缩放到CNN要求的大小

    根据IOU对每一张图片进行标注,如IOU>0.5标注为目标类别(正样本),否则为背景类别(负样本)

  我的理解:每一张原始图片都会生成1500个训练样本

(二)CNN提取特征

  可选网络结构:AlexNet,Vgg-16

  预训练:有监督预训练

    物体检测的一个难点在于,物体标签训练数据少,如果要直接采用随机初始化CNN参数的方法,那么目前的训练数据量是远远不够的。

    这种情况下,最好的是采用某些方法,把参数初始化了,然后在进行有监督的参数微调,文献采用的是有监督的预训练。

    有监督预训练,我们也可以把它称之为迁移学习。比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,

    用于人脸的年龄识别。然后当你遇到新的项目任务是:人脸性别识别,那么这个时候你可以利用已经训练好的年龄识别CNN模型,

    去掉最后一层,然后其它的网络层参数就直接复制过来,继续进行训练。这就是所谓的迁移学习,说的简单一点就是把一个任务训练好的参数,

    拿到另外一个任务,作为神经网络的初始参数值,这样相比于你直接采用随机初始化的方法,精度可以有很大的提高。

    图片分类标注好的训练数据非常多,但是物体检测的标注数据却很少,如何用少量的标注数据,训练高质量的模型,这就是文献最大的特点,

    这篇paper采用了迁移学习的思想。文献就先用了ILSVRC2012这个训练数据库(这是一个图片分类训练数据库),先进行网络的图片分类训练。

    这个数据库有大量的标注数据,共包含了1000种类别物体,因此预训练阶段cnn模型的输出是1000个神经元,

    或者我们也直接可以采用Alexnet训练好的模型参数。

  fine-tuning

    将最后一层的输出层单元数修改为目标检测的类别数+1,多出的一类为背景。输出层参数采用随机初始化,之前的参数不变。继续对网络进行训练。

(三)训练SVM

  CNN最后的softmax层可以做分类,在论文中为什么要把softmax层换成SVM进行分类?

    因为SVM和CNN分类时的正负样本定义不同,导致CNN+softmax输出比SVM精度要低。由于CNN容易过拟合,需要大量的训练样本,

    所以CNN的样本标注比较宽松,IOU>0.5即标记为正样本。SVM适用于小样本训练,对样本的IOU要求较高,在训练时,IOU>0.7时标记为正样本。

  由于SVM是二分类器,因此对每一个类别都需要训练一个SVM

(四)Bounding Box Regression--边框回归

  详解

  

  任务描述:G为目标边框(人为标注),P为网络计算得到的边框。边框回归的任务是计算从P到G^的映射f,使P经过映射以后得到与真实窗口G

      更接近的G^

  思路:平移+尺度缩放

  输入:(训练时)CNN提取到的该边框的特征+Ground Truth即G的坐标

     (预测时)CNN提取到的该边框的特征

  输出:需要进行的平移量和尺度缩放量,即P到G^的映射,包括4个值:Δx,Δy,Sw,Sh

  通过计算得到新的回归框

  

    

  

  

目标检测算法(一):R-CNN详解的更多相关文章

  1. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

  2. 目标检测算法之R-CNN算法详解

    R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测 ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. 深度剖析目标检测算法YOLOV4

    深度剖析目标检测算法YOLOV4 目录 简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读 yo ...

  5. 如何使用 pytorch 实现 SSD 目标检测算法

    前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...

  6. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  7. FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019

    论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测 ...

  8. CNN详解

    CNN详解 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要就是卷积神经网络(CNN) ...

  9. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  10. FAIR开源Detectron:整合全部顶尖目标检测算法

    昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...

随机推荐

  1. CSS动画实例:圆的涟漪扩散

    设页面中有<div class="circle "></div>,定义.circle的样式规则绘制一个半径为75px,边框厚度为4px的圆,再定义关键帧,使 ...

  2. Leetcode 24. Swap Nodes in Pairs(详细图解一看就会)

    题目内容 Given a linked list, swap every two adjacent nodes and return its head. You may not modify the ...

  3. Shell编程—sed和gawk

    1文本处理 1.1sed 编辑器 sed编辑器被称作流编辑器(stream editor),和普通的交互式文本编辑器恰好相反.在交互式文本编辑器中(比如vim),你可以用键盘命令来交互式地插入.删除或 ...

  4. Redis秒杀系统架构设计-微信抢红包

    导读 前二天我写了一篇,Redis高级项目实战(点我直达),SpringBoot整合Redis附源码(点我直达),今天我们来做一下Redis秒杀系统的设计.当然啦,Redis基础知识还不过关的,先去加 ...

  5. 力扣Leetcode 179. 最大数 EOJ 和你在一起 字符串拼接 组成最大数

    最大数 力扣 给定一组非负整数,重新排列它们的顺序使之组成一个最大的整数. 示例 1: 输入: [10,2] 输出: 210 示例 2: 输入: [3,30,34,5,9] 输出: 9534330 说 ...

  6. Spark RDD中Runtime流程解析

    一.Runtime架构图 (1)从Spark  Runtime的角度讲,包括五大核心对象:Master.Worker.Executor.Driver.CoarseGrainedExecutorBack ...

  7. Unity动态绑定按钮触发方法

    在使用unity制作UI的过程中,基本都需要接触到按钮,然后按钮要起作用的话,那么就需要为按钮绑定响应方法. 为按钮绑定触发的方法,我知道的有两种方法,第一种:手动使用unityEditor 绑定,另 ...

  8. selenium上手

    功能自动化 前提 自动化的主要目的并不是为了找Bug,是为了证明功能可用 不只是所有的功能都可以自动化,如UI 并不是所有的项目都可以使用自动化,如selenium只能使用bs项目,小项目不适合使用自 ...

  9. rpc中的高并发

    手写一个高性能的rpc框架 模拟服务端,运行main函数,相当于启动服务器 public class ServerApplication { public static void main(Strin ...

  10. Java垃圾回收略略观

    本文主要介绍Java垃圾回收(Garbage Collection),90%干货,文字颇多,需要耐心一点看. [对象判断状态算法] ------引用计数法 在创建对象时,为对象创建一个伴生的引用计数器 ...