【FJOI2007】轮状病毒 - Matrix-Tree定理
题目描述
轮状病毒有很多变种。许多轮状病毒都是由一个轮状基产生。一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成。2个原子之间的边表示这2个原子之间的信息通道,如下图所示。
n轮状病毒的产生规律是在n轮状基中删除若干边,使各原子之间有唯一一条信息通道。例如,共有16个不同的3轮状病毒,如下图所示。
给定n(N<=100),编程计算有多少个不同的n轮状病毒。
思路
结论 $ f_{n} = f_{n-2} \times 3 - f_{n-1} + 2 $ (Matrix-Tree 定理推出来了,不会 233)
要写高精
#include <bits/stdc++.h>
using namespace std;
struct bign {
int d[100], len;
void clean() { while(len > 1 && !d[len-1]) len--; }
bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num) {
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num){
char s[20]; sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator + (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b)const{
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++) for(i = 0; i < len; i++)
c.d[i+j] += d[i] * b.d[j];
for(i = 0; i < c.len-1; i++)
c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
}a,b,c;
int main() {
int n;
scanf("%d",&n);
b = 5,c = 1;
if (n < 3) {
printf("%d",n == 2 ? 5 : 1);
return 0;
}
for (int i = 3;i <= n;i++) {
a = b*3-c+2;
c = b;
b = a;
}
for (int i = a.len-1;i >= 0;i--) printf("%d",a.d[i]);
return 0;
}
【FJOI2007】轮状病毒 - Matrix-Tree定理的更多相关文章
- BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【证明与推广与背诵】Matrix Tree定理和一些推广
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...
- 数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- HDU 4305 Lightning Matrix Tree定理
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...
- 【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...
- BZOJ.4894.天赋(Matrix Tree定理 辗转相除)
题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
随机推荐
- JAVA集合四:比较器--类自定义排序
参考链接: HOW2J.CN 前言 对于JAVA集合,都能够用集合的工具类Collections 提供的方法: Collections.sort(List list) Collections.sort ...
- C++语法小记---类型检测
类型检测 C++使用typeid关键字进行类型检查 不同的编译器使用typeid返回的类型名称不严格一致,需要特别注意 也可以使用虚函数,返回各自的类型名 如果typeid的操作数不是类类型(类指针也 ...
- jmeter之断言、数据提取器(正则表达式、jsonpath、beanshell)、聚合报告、参数化
ctx - ( JMeterContext) - gives access to the context vars - ( JMeterVariables) - gives read/write ac ...
- Statezhong shiyong redux props
在构造方法中使用props给state赋值不允许, 原因需要检查
- 定长比较环状字符串-------strcat与strncpy的妙用
题目链接:https://vjudge.net/problem/UVA-1584 题解:用strcpy与strcmp定长比较字符串即可,strcat与strcmp对string不适用,所以只能改写为c ...
- Lua中 pairs和ipairs的区别
Lua系列–pairs和ipairsLua中Table的存储方式在看二者的区别之前,我们首先来看一下Lua中的table是如何在内存中进行分配的.Table的组成:1.哈希表 用来存储Key-Valu ...
- 【laravel】基于jwt实现用户认证
安装及基础配置 使用 composer 安装 # 建议使用1.0以上版本 composer require tymon/jwt-auth .*@rc 进行一些配置 有些文档会说要添加 Tymon\JW ...
- 05_MySQL数据库
学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"软件测试"获取视频和教程资料! b站在线视频 软件测试 ...
- github提交报错
github正确提交步骤 https://www.cnblogs.com/alex-415/p/6912294.html 可能的错误 提交前没有先pull,主要的原因是在创建repository的时候 ...
- Skill 如何翻转一个list
https://www.cnblogs.com/yeungchie/ code 发现已经有内置了reverse(l_list) unless(fboundp('reverse) procedure(y ...