Deep Learn I'm back.
Intorduction:
时隔好几个月,我准备重新进入Deep Learning 的领域。昨天和老师聊了很多,之前觉得我做的工作就是排列组合,在水论文,灌水。但老师却说:这也是为将来的研究打基础。 我想是这么个道理,科研这一块,写论文,发论文,画图等等细枝末节的工作都是需要经验积累的,一开始搞个大的,不现实,就算搞出来,其他细节工作没做好,影响整体质量,也白搭。
任何问题都要辩证地看。
之后老师给我讲了他的一个idea,几年前想的,时空序列方向,通过arrange不同时间维度组成tensor进行卷积,想法很新颖,我从未听说过,但据他说跑出来效果不好,可能调参没做好,后面事情就搁置了。我听到这个idea,欣喜若狂,又恍然大悟。这不就是Deep Learning 领域做research 的过程吗?
想出一个你认为绝妙的idea,实验验证- 不断打磨-不断验证 重复进行,最终要么出成果,要么变成垃圾扔掉。
Coding:
现在呢,对这个领域重拾了一些信心。越来越意识到,在Deep Learning 领域做research 重要的不是Idea 而是 Implementing ability. 说白了就是Coding 的能力。
面向对象要会,基本的编程思想得懂。python要学过,至少要看得懂别人的代码,就算看不懂,也得具备查阅资料把它看懂的能力。框架得熟悉(pytorch),这和python是一个道理。其中贯穿始终的是coding style。
我这几个月的coding 经历发现,很多beginner 包括我,写出来的代码都很烂,像上完厕所用过的纸。 根本没有复用性,没有鲁棒性。这一块想提高,一是去看代码规范的书,二是多做实战多看别人的代码,自己敲一遍,learn by doing。
我推荐的学习顺序是,先做实战,学到点皮毛,再去看书。有实践经验再看书,会有恍然大悟,茅塞顿开的感觉,你在实践中学到的规范会在书里以高观点的方式体现,诠释。相反,先看书再实践,就没有这样的效果了。只会云里雾里。
当然这一切都建立在你有一个comprehensive idea of deep learning( machine learning),这一方面推荐Andrew Ng 的课程。
Keep following:
基础都搭建好了,那每天就得follow 最新的资讯,看看title,abstract,实在懒看看图片也好。总之,follow领域内的热点,看看大家都在干什么。这一步能create new idea,也能enhance 对一些概念的理解,
看到好的文章,甚至能提升你的维度,以更高的观点俯视问题。这方面需要关注一些AI自媒体,我推荐的:@爱可可老师,机器之心等等。这些都能在一些网站上找到:国内有微博、微信公众号、知乎....国外就是reddit, twitter, medium......
Idea:
他们都说Idea是这个领域最不值钱的东西了,现在人人都有idea,就看谁能最快实现出来。所以我反复强调coding 能力,定期去跑跑demo 实现一个implementation有益科研之路。更何况coding是每个学计算机的人的看家本事,不论将来从事的方向如何,coding都是基本技能,在一个领域内锻炼出来的coding能力换一个领域也同样适用。即使换方向,你的学习速度也会比别人快很多。这大概就是transfer learning?
关于idea,有一篇文章写的相当 informative.我还没看完,但前几章让我受益匪浅。我意识到,好的idea也是排列组合,只不过他们站在更高,更深的维度上发现的。而不断挖掘深度,是我们一以贯之的使命。
如何在计算机应用领域寻找研究想法 - 钱志云的文章 - 知乎 https://zhuanlan.zhihu.com/p/341685279
Help:
学会寻求帮助,前提是保持humble。coding上,理论上总有牛人,他们懂的比你多,理解的深度比你深,他们的work会惊掉你的下巴。和他们学习,遇到问题向他们寻求帮助。我所认识的绝大多数人都很nice,不会嫌弃你的问题。我最开始做的时候,需要复现一段代码,当时代码跑不通,我去调,coding上遇到了好多问题,就是一位学长不停的指导我,恶补了很多知识,学到很多技巧,有时问他这段代码应该怎么写,他直接把代码敲好发我。其次应该多找老师帮忙,前提是老师人很好。一些研究上的事,一些郁闷的事情,都能和老师交流。我是间隔了快一个学期才去找老师聊聊,聊完后豁然开朗。后悔没有找点找他。当然了,和nice的人交往,自己也要足够nice。这一点至关重要。
最后一段话是写给自己的。出国只看重绩点,而在这个学校,等到考试周抱佛脚,也能有个不错的成绩。学校不卷,绩点不难刷。因此你有大把的时间来做其他事情。你的退路有很多。科研是你的一个爱好,和运动、弹吉他一般,但略高于他们。你会面临更大的困难,要付出更多的时间,精力。做研究不像上课,你面对的是未知的深渊,没有正确答案,没有人懂你的研究内容,你没有同学可以交流讨论。结果的正确性只能靠实验结果验证。突然有一天你脑袋里冒出一个你认为绝妙的idea,你为这个理论想到了完美的解释,根据你的解释,模型一定会work的非常好,经过几个月的实验验证,你怎么都调不好,performance越来越差,你会自我怀疑,妄自菲薄。习惯他,推倒重来。你舍不得,不甘心。但没有用。深渊没有感情,错了就得放弃。
但行好事,莫问前程。做pure researcher~
idea the content of cognition; the main thing you are thinking about More (Definitions, Synonyms, Translation)
Deep Learn I'm back.的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- TensorFlow入门学习(让机器/算法帮助我们作出选择)
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...
- ubuntu17.10 安装CUDA
1. 更新apt-get源列表 sudo apt-get update sudo apt-get upgrade 2. 添加驱动源 sudo add-apt-repository ppa:graphi ...
- keras_训练人脸识别模型心得
keras_cnn_实现人脸训练分类 废话不多扯,直接进入正题吧!今天在训练自己分割出来的图片,感觉效果挺不错的,所以在这分享一下心得,望入门的同孩采纳. 1.首先使用python OpenCV库里面 ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
随机推荐
- 四、git学习之——分支管理、解决冲突
分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN. 如果两个平行宇宙互不干扰,那对现在的你也没啥影响.不过,在某个时间点,两个平行宇宙合并 ...
- nginx转发上传图片接口图片的时候,报错413
我这边有一个接口是上传图片,使用nginx进行代理,上传大一点的图片,直接调用我的接口不会报错,但是调用nginx上传图片就会报错"413 Request Entity Too Large& ...
- C++ cin.ignore() 的使用
cin.sync()的功能是清空缓冲区,而cin.ignore()虽然也是删除缓冲区中数据的作用,但其对缓冲区中的删除数据控制的较精确. 有时候你只想取缓冲区的一部分,而舍弃另一部分,这是就可以使用c ...
- 【Jmeter中,保存测试结果xml时报 error loading results file -see log file 问题的处理办法】
使用JMeter测试并发保存测试文件时报错:Error loading results file - see file log解决办法:新建一个文本文件(什么类型都可以),在文件中加上<?xml ...
- AWT09-弹球小游戏
1.补充 为了让Java绘制动画,可以借助Swing的定时器,其构造为: 方法名 说明 Timer(int delay,ActionListener listener) 每间隔delay毫秒,自动触发 ...
- [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法
今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...
- OSPF综合实验
实验要求: 1.R4为ISP,其上只能配置IP地址,R4与其他所有直连设备间使用共有IP 2.R3--R5/6/7为MGRE环境,R3为中心站点 3.整个OSPF环境IP地址为172.16.0.0/1 ...
- 使用CentOS8搭建私有NAS存储的一些建议
对于超过2TB的硬盘来说只能考虑GPT分区表,因此还是建议使用EFI来安装系统. 对于超过2TB的硬盘来说应该选择LVM,然后磁盘末尾预留出至少100G的空间用于将来方便维护安装个Windows系统之 ...
- win10开启运行下显示历史操作记录
步骤 设置,隐私,常规,允许windows跟踪应用启动,以改进开始和搜索结果
- Excel 数据对比,窗口并列排序操作(xlw文件格式的由来)
步骤1:打开Excel文件,输入一些数据 步骤2:点击视图,创建新窗口(这里就会创建一个和步骤1一抹一样的的表格,我们可以在任务栏上看到) 第三步:点击视图里面的全部重排按钮,在重拍窗口里面选择需要拍 ...