AtCoder Beginner Contest 172
比赛链接:https://atcoder.jp/contests/abc172/tasks
A - Calc
题意
给出一个正整数 $a$,计算 $a + a^2 + a^3$ 。($1 \le a \le 10$)
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
int a; cin >> a;
cout << a + a * a + a * a * a;
}
B - Minor Change
题意
给出两个等长的字符串 $s$ 和 $t$,每次可以替换 $s$ 中的一个字符,问使 $s$ 和 $t$ 相等至少要替换多少字符。
题解
不同的字符是一定要替换的。
代码
#include <bits/stdc++.h>
using namespace std;
int main() {
string s, t; cin >> s >> t;
int cnt = 0;
for (int i = 0; i < s.size(); i++)
if (s[i] != t[i]) ++cnt;
cout << cnt << "\n";
}
C - Tsundoku
题意
有两摞书,一摞有 $n$ 本,从上至下每本需阅读 $a_i$ 分钟,一摞有 $m$ 本,从上至下每本需阅读 $b_i$ 分钟,问最多能在 $k$ 分钟内读多少本书。
题解
计算两摞书阅读时长的前缀和,枚举从第一摞书中读多少本,余下的时间用二分或双指针查找能在第二摞书中读多少本。
代码一
二分
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n, m, k; cin >> n >> m >> k;
ll pre_a[n + 1] = {};
for (int i = 0; i < n; i++) {
int x; cin >> x;
pre_a[i + 1] = pre_a[i] + x;
}
ll pre_b[m + 1] = {};
for (int i = 0; i < m; i++) {
int x; cin >> x;
pre_b[i + 1] = pre_b[i] + x;
}
int ans = 0;
for (int i = 0; i < n + 1; i++) {
ll ex = k - pre_a[i];
if (ex >= 0) {
int j = upper_bound(pre_b, pre_b + m + 1, ex) - pre_b - 1;
ans = max(ans, i + j);
}
}
cout << ans << "\n";
}
代码二
双指针
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n, m, k; cin >> n >> m >> k;
ll pre_a[n + 1] = {};
for (int i = 0; i < n; i++) {
int x; cin >> x;
pre_a[i + 1] = pre_a[i] + x;
}
ll pre_b[m + 1] = {};
for (int i = 0; i < m; i++) {
int x; cin >> x;
pre_b[i + 1] = pre_b[i] + x;
}
int ans = 0;
for (int i = 0, j = m; i < n + 1; i++) {
ll ex = k - pre_a[i];
if (ex >= 0) {
while (j >= 0 and pre_b[j] > ex) --j;
ans = max(ans, i + j);
}
}
cout << ans << "\n";
}
D - Sum of Divisors
题意
设 $f_{(x)}$ 为 $x$ 正因子的个数。计算 $\sum_{i = 1}^n i \times f_{(i)}$ 。
题解
筛得每个数的 $f_{(x)}$,求和即可。
代码一
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const int N = 1e7 + 10; ll f[N]; int main() {
int n; cin >> n;
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j += i)
++f[j];
ll ans = 0;
for (int i = 1; i <= n; i++)
ans += i * f[i];
cout << ans << "\n";
}
代码二
代码一简化而得
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n; cin >> n;
ll ans = 0;
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j += i)
ans += j;
cout << ans << "\n";
}
E - NEQ
题意
给出 $n, m$,计算有多少对大小为 $n$ 的数列 $a, b$ 满足:
- $1 \le a_i, b_i \le m$
- $a_i \neq a_j\ \ \ if\ \ \ i \neq j$
- $b_i \neq b_j\ \ \ if\ \ \ i \neq j$
- $a_i \neq b_i$
题解
\begin{equation} A_m^n ( \sum_{i = 0}^n (-1)^{i} C_n^i A_{m - i}^{n - i}) \nonumber \end{equation}
- $A_m^n$,$m$ 个数排 $n$ 个位置,即合法的 $a$ 的个数;
- $\sum$,对于每个合法的 $a$ 来说,合法的 $b$ 的个数;
- $(-1)^i$,容斥原理;
- $C_n^i A_{m - i}^{n - i}$,从 $b$ 的 $n$ 个位置中选 $i$ 个位置与 $a$ 中的数相等,余下 $n - i$ 个位置共有 $m - i$ 个数可选;
- 当 $i = 0$ 时,$C_n^i A_{m - i}^{n - i} = A_m^n$,即合法的 $b$ 的个数;
- 当 $i \ge 1$ 时,$C_n^i A_{m - i}^{n - i}$ 即代表对 $a$ 来说不合法的 $b$ 的个数;
- 所以右式即用容斥原理从合法的 $b$ 中减去对 $a$ 来说不合法的 $b$ 的个数。
代码
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const int N = 5e5 + 10;
const int mod = 1e9 + 7; ll fac[N]; ll binpow(ll a, ll b) {
ll res = 1;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
} void init() {
fac[0] = 1;
for (int i = 1; i < N; i++)
fac[i] = fac[i - 1] * i % mod;
} ll inv(ll a) {
return binpow(a, mod - 2);
} ll A(ll n, ll m) {
return fac[n] * inv(fac[n - m]) % mod;
} ll C(ll n, ll m) {
return fac[n] * inv(fac[m]) % mod * inv(fac[n - m]) % mod;
} int main() {
init();
int n, m; cin >> n >> m;
ll sum = 0;
for (int i = 0; i <= n; i++) {
sum += binpow(-1, i) * C(n, i) * A(m - i, n - i) % mod;
sum = (sum + mod) % mod;
}
cout << A(m, n) * sum % mod << "\n";
}
AtCoder Beginner Contest 172的更多相关文章
- AtCoder Beginner Contest 172 题解
AtCoder Beginner Contest 172 题解 目录 AtCoder Beginner Contest 172 题解 A - Calc B - Minor Change C - Tsu ...
- AtCoder Beginner Contest 100 2018/06/16
A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...
- AtCoder Beginner Contest 052
没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...
- AtCoder Beginner Contest 053 ABCD题
A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...
- AtCoder Beginner Contest 136
AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 076
A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...
- AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】
AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...
- AtCoder Beginner Contest 064 D - Insertion
AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...
随机推荐
- 【Java基础】反射
反射 反射的概述 反射(Reflection)是被视为动态语言的关键,反射机制允许程序在执行期借助 Reflection API 取得任何类的内部信息,并能直接操作任意对象的内部属性和方法. 加载完类 ...
- 【JavaWeb】jQuery 基础
jQuery 基础 介绍 顾名思义,它是 JavaScript 和 查询,是辅助 JavaScript 开发的类库. 它的核心思想是 write less, do more. 所以它实现了很多浏览器的 ...
- 计算机考研复试真题 abc
题目描述 设a.b.c均是0到9之间的数字,abc.bcc是两个三位数,且有:abc+bcc=532.求满足条件的所有a.b.c的值. 输入描述: 题目没有任何输入. 输出描述: 请输出所有满足题目条 ...
- Java 用java GUI写一个贪吃蛇小游戏
目录 主要用到 swing 包下的一些类 上代码 游戏启动类 游戏数据类 游戏面板类 代码地址 主要用到 swing 包下的一些类 JFrame 窗口类 JPanel 面板类 KeyListener ...
- Centos搭建Git服务端
首先需要安装git,可以使用yum源在线安装 yum install -y git 创建一个git用户,用来运行管理git服务 adduser git 初始化git仓库(这里我们选择/home/git ...
- 【Web】HTML入门小结
文章目录 HTML? HTML 初识元素/标签 HTML语义化标签 标题 段落 font HTMl链接 HTML图像 HTML列表 HTML div HTML 块级元素与行内元素 HTML常用带格式作 ...
- SQL语句中 ` 的作用
SQL语句中 ` 的作用 做攻防世界WEB区 supersqli 题目,在构建SQL语句时,遇到SQL语句中有 ` 时可以解析,没有则不能. 查阅资料得知,` 通常用来说明其中的内容是数据库名.表名. ...
- 当spring 对象@Autowired 注入失败或者创建对象Bean失败、No qualifying bean/Error creating bean 的失败情形分析和解决方案
错误信息 今天开发的过程中突然出现如下错误: Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: N ...
- SpringBoot WebSocket技术
最近看了Spring in Action,了解了一下WebSocket和Stomp协议相关技术,并搭建了一个项目.网上的例子不完整或者描述不清,所以自己记录一下以作备忘. 一.配置 Spring Bo ...
- 查看Java的汇编指令
在IDEA配置VM options,打印汇编指令 -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly windows系统 下载插件 hsdis-amd6 ...