第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)

2.1 词汇表征(Word Representation)

词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词。这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强。

换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,woman,king,queen,apple,orange 或者词典里的任何一个单词,我们学习这些词的特征或者数值。

举个例子,对于这些词,比如想知道这些词与 Gender(性别)的关系。假定男性的性别为-1,女性的性别为+1,那么 man 的性别值可能就是-1,而 woman 就是-1。最终根据经验 king 就是-0.95,queen 是+0.97,apple 和 orange 没有性别可言。

我们假设有 300 个不同的特征,这样的话就有了这一列数字(上图编号 1 所示),这里只写了 4 个,实际上是 300 个数字,这样就组成 了一个 300 维的向量来表示 man 这个词。接下来,我想用$

吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)-课程笔记的更多相关文章

  1. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  2. 吴恩达《深度学习》-课后测验-第五门课 序列模型(Sequence Models)-Week 2: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入)

    Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn ...

  3. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第三周 序列模型和注意力机制(Sequence models & Attention mechanism)-课程笔记

    第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence ...

  4. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  8. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  9. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

随机推荐

  1. Spring Boot 2.x基础教程:使用集中式缓存Redis

    之前我们介绍了两种进程内缓存的用法,包括Spring Boot默认使用的ConcurrentMap缓存以及缓存框架EhCache.虽然EhCache已经能够适用很多应用场景,但是由于EhCache是进 ...

  2. day12 异常 模块 单例

    1.异常 处理     在程序执行过程中 ,发生,影响程序的正常运行     在python中 异常就是一个错误    try  ....  except....捕获异常     try  用来检测t ...

  3. Python Matplotlib绘图基础

    Matplotlib绘图基础 1.Figure和Subplot import numpy as np import matplotlib.pyplot as plt #创建一个Figure fig = ...

  4. Vue源码解析,keep-alive是如何实现缓存的?

    前言 在性能优化上,最常见的手段就是缓存.对需要经常访问的资源进行缓存,减少请求或者是初始化的过程,从而降低时间或内存的消耗.Vue 为我们提供了缓存组件 keep-alive,它可用于路由级别或组件 ...

  5. Jmeter系列(50)- 详解 If 控制器

    如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 简单介绍 可以通过条件来控制是否运行其 ...

  6. 目录扫描、Nmap

    一.基本定义 1.目录扫描: 扫描站点的目录,寻找敏感文件(目录名.探针文件.后台.robots.txt.备份文件等). 2.目录:站点结构,权限控制不严格. 3.探针文件:服务器配置信息,例:php ...

  7. Jmeter 常用函数(9)- 详解 __UUID

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 返回 伪随机类型4 通用唯一标识符 语 ...

  8. DML语言(数据操纵语言)

    #DML语言/*数据操作语言:插入:insert修改:update删除:delete */ #一.插入语句#方式一:经典的插入/*语法:insert into 表名(列名,...) values(值1 ...

  9. 第七篇Scrum冲刺博客--Interesting-Corps

    第七篇Scrum冲刺博客 站立式会议 1.会议照片 2.队友完成情况 团队成员 昨日完成 今日计划 鲍鱼铭 各界面数据请求云函数设计及实现 代码交接及整体架构搭建 叶学涛 进行代码优化 和队友进行交接 ...

  10. vps的搭建

    最近一直想自己搭建一款vps使用,但是苦于一直没有时间,直到今天得空,与大家一起分享下. 服务商的选择 因为自己之前在 vultr 上还留有余额(60$呢,好几百块大洋呢),所以我的服务商就选择 vu ...