【组合计数】visit
题目大意
从 \((0,0)\) 开始,每次只可走上下左右一个单位长度,可走重复路,求第 \(T\) 步正好走到 \((n,m)\) 的方案数。
答案要求对 \(MOD\) 取模,\(MOD\) 保证是几个不同质数的乘积。
数据范围
\(1\leq T\leq 100000;-T\leq n,m\leq T;1\leq MOD\leq 10^9+7\)
样例输入
4 10
2 2
样例输出
6
思路
枚举向左走了 \(l\) 步,则向右走了 \(r\) 步,向上走了 \(u\) 步,向下走了 \(d\) 步,依据高考数学中的平均分组问题,答案就是:
\]
但是这个式子比较繁琐不好计算,但是聚聚 \(\texttt{skyh}\) 给出了一个简单的式子:
\]
问了数奥的同学该式子的正确性,请大家学习。
显然使用 \(Lucas\) 定理求解。
噫,好,我会了!
然后一顿怒操作发现样例输出 \(0\)。这是因为在模 \(10\) 的意义下样例是没有逆元的。所以我们需要将模数分解质因子,在每一个质因子下的模意义下求出答案,最后用 \(CRT\) 合并答案即可。
代码
数论全家桶
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=1e5+10;
int T,Mod,N,M;
int res[maxn],fac[maxn],inv[maxn];
inline int read(){
int x=0;bool fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=0;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return fopt?x:-x;
}
void exgcd(int a,int b,int &x,int &y){
if(!b)return x=1,y=0,void();
exgcd(b,a%b,x,y);
int z=x;x=y;y=z-(a/b)*y;
}
inline int qpow(int x,int b,int p){
int ans=1,base=x;
while(b){
if(b&1)ans=ans*base%p;
base=base*base%p;
b>>=1;
}
return ans;
}
bool Miller_Rabin(int n){
if(n==2)
return true;
for(int i=1;i<=30;i++){
int a=rand()%(n-2)+2;
if(qpow(a,n,n)!=a)
return false;
}
return true;
}
int v[maxn];
inline void Get(int x){
int u=sqrt(x);
for(int i=2;i<=u;i++){
if(x%i!=0)continue;
if(Miller_Rabin(i)){
v[++v[0]]=i;
x/=i;
}
}
if(x>1)v[++v[0]]=x;
}
inline int C(int n,int m,int p){
if(n<m)return 0;
if(!m||n==m)return 1;
return fac[n]*inv[m]%p*inv[n-m]%p;
}
int Lucas(int n,int m,int p){
if(n<m)return 0;
if(!m)return 1;
return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
}
inline int CRT(int n){
int M=1,ans=0;
for(int i=1;i<=n;i++)
M*=v[i];
for(int i=1;i<=n;i++){
int m=M/v[i];
int x=0,y=0;
exgcd(m,v[i],x,y);
ans+=res[i]*m*(x<0?x+v[i]:x);
}
return ans%M;
}
signed main(){
srand(time(0));
T=read();Mod=read();N=read();M=read();
Get(Mod);
for(int i=1;i<=v[0];i++){
int p=v[i];
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int j=2;j<=T;j++)
inv[j]=(p-p/j)*inv[p%j]%p;
for(int j=2;j<=T;j++){
inv[j]=inv[j-1]*inv[j]%p;
fac[j]=fac[j-1]*j%p;
}
res[i]=Lucas(T,(T-N-M)/2,p)*Lucas(T,(T-abs(N-M))/2,p)%p;
}
printf("%lld\n",CRT(v[0]));
return 0;
}
【组合计数】visit的更多相关文章
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
随机推荐
- Linux通过命令行将英文改成中文
1.首先查看当前系统是否有中文语言包 locale -a 如果没有zh_CN.utf8,就需要下载中文语言包,否则,如果有中文语言包,跳过第二步. 2.安装中文语言包 Ubuntu: sudo apt ...
- 《SeleniumBasic 3.141.0.0 - 在VBA中操作浏览器》系列文章之一:SeleniumBasic的下载
Selenium是一种非常流行的浏览器和网页自动化技术,开发人员可以使用C#.Java.Python等语言来操作Chrome.Firefox等浏览器. VBA语言可以直接操作访问Microsoft I ...
- Ubuntu中的launcher
最近在ubuntu系统中下载了最新版的eclipse,在一个临时文件夹中解压了eclipse压缩包,然后打开eclipse,按平时常规做法,我在launcher里右键点击eclipse,选择“锁定到启 ...
- Priest John's Busiest Day(POJ 3683)
原题如下: Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12162 ...
- 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A ...
- command三国杀开发日记20200915
一句话进展 完善了程序结构,分离.c和.h 搭建了6个阶段函数 实现了玩家摸牌 封装实现了日志打印函数 日志打印 想要区分日志等级,包括DEBUG.INFO.WARN.ERRRO.PANIC,提供统一 ...
- 我的Python自学之路-003 字符串的知识
'''字符串是以引号或者单引号括起来的任意文本,例如"123","asdfjk",'adfa'引号或者单引号,只是一种表示方法,并不是字符串的一部分如果字符串本 ...
- MVC设计模式-笔记1
MVC不仅仅是一个设计模式,它应该说是一种软件开发架构模式,它包含了很多的设计模式,最为密切是以下三种模式: 1.Observer观察者模式 2.Composite组合模式 3.Strategy策略模 ...
- KONGA下的HAMC插件功能 --JAVA代码实现
设置HAMC插件 postman模拟请发发送: Java代码: HMAC-SHA-256工具类 1 import java.security.InvalidKeyException; 2 impor ...
- phpStudy8.1.0.1配置子域名多网站
版本 这里phpStudy版本为8.1.0.1: 步骤 假设域名为:domain.com:公网IP地址为:42.33.33.33 首先云解析中配置,添加子域名A记录直接指向你的公网IP: ep.dom ...