<题目链接>

<转载于 >>> >

题目大意:

让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠。答案对1000000007取模。

解题分析:

看到题目所给n的数据这么大,就知道肯定存在递推公式,至于递推公式的具体的分析过程  >>>大牛博客。求出递推公式后,由于数据太大,所以我们利用矩阵快速幂来加速。当然,如果比赛的时候想不到递推公式,我们也可以通过搜素得到前面的几组数据,然后在通过高斯消元来得到符合这些数据的公式的通解,最后再利用矩阵快速幂来求解。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define LL long long
const int mod=;
struct matrix
{
LL x[][];
};
matrix mutimatrix(matrix a,matrix b)
{
matrix temp;
memset(temp.x,,sizeof(temp.x));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
{
temp.x[i][j]+=a.x[i][k]*b.x[k][j];
temp.x[i][j]%=mod;
}
return temp;
} matrix k_powmatrix(matrix a,LL n)//矩阵快速幂
{
matrix temp;
memset(temp.x,,sizeof(temp.x));
for(int i=;i<;i++)
temp.x[i][i]=; while(n)
{
if(n&)
temp=mutimatrix(temp,a); a=mutimatrix(a,a);
n>>=;
}
return temp;
} int main()
{
LL n;
while(scanf("%lld",&n)!=EOF)
{
//前面四个手算下
if(n==)
{
printf("1\n");
continue;
}
if(n==)
{
printf("5\n");
continue;
}
if(n==)
{
printf("11\n");
continue;
}
if(n==)
{
printf("36\n");
continue;
} matrix st;
memset(st.x,,sizeof(st.x));
st.x[][]=;
st.x[][]=;
st.x[][]=;
st.x[][]=-; st.x[][]=;
st.x[][]=;
st.x[][]=; matrix init;//初始矩阵
memset(init.x,,sizeof(init.x)); init.x[][]=;
init.x[][]=;
init.x[][]=;
init.x[][]=; st=k_powmatrix(st,n-);//经过n-4次相乘
st=mutimatrix(init,st);//然后再乘上初始矩阵 printf("%lld\n",(st.x[][]+mod)%mod);
}
return ;
}

2018-08-09

hdu 6185 递推+【矩阵快速幂】的更多相关文章

  1. hdu 6185 递推+矩阵快速幂

    思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设 ...

  2. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  3. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  4. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  5. HDU Queuing(递推+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. HDU - 6185 Covering(暴搜+递推+矩阵快速幂)

    Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...

  8. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  9. HDU6030 Happy Necklace(递推+矩阵快速幂)

    传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...

  10. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

随机推荐

  1. 【BZOJ4826】【HNOI2017】影魔(扫描线,单调栈)

    [BZOJ4826][HNOI2017]影魔(扫描线,单调栈) 题面 BZOJ 洛谷 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他 ...

  2. solr学习

    入门文档 http://www.cnblogs.com/edwinchen/p/3972904.html 中文分词 https://github.com/EugenePig/ik-analyzer-s ...

  3. J - Joseph and Tests Gym - 102020J (二分+线段树)

    题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...

  4. 超详细的Web前端开发规范文档

    规范目的为提高团队协作效率, 便于后台人员添加功能及前端后期优化维护, 输出高质量的文档, 特制订此文档. 本规范文档一经确认, 前端开发人员必须按本文档规范进行前台页面开发. 本文档如有不对或者不合 ...

  5. java Comparable 和 Cloneable接口

    Comparable接口定义了compareTo方法,用于比较对象. 例如,在JavaAPI中,Integer.BigInteger.String以及Date类定义如下 Cloneable接口 Clo ...

  6. 【libreoffice】libreoffice实现office转pdf、html、jpg等格式数据

    其实libreoffice有好多功能,完全可以替代office 1.windows下将word转为pdf 1  安装libreoffice 到官网下载后安装即可.https://donate.libr ...

  7. jquery 操作表单的问题

    下拉框获取选中项的值: $("#ID").find("option:selected").val(); 设置下拉框选中项: $("#ID") ...

  8. kali linux 破解wpa密码

    apt-get update apt-get install hostapd-wpe ls -l /etc/hostapd-wpe/ nano /etc/hostapd-wpe/hostapd-wpe ...

  9. 【逆向工具】IDA使用4-控制台逆向分析 Reverse004.exe 获取密码

    工具 吾爱破解版本OD.IDA6.8 OD使用-动态分析 OD快捷方式 F2 下断点,也就是指定断点的地址F3加载一个可执行程序,进行调试分析F4程序执行到光标处 F5 缩小.还原当前窗口 F7 单步 ...

  10. elk系统通过nginx添加对kibana的登录认证

    elk系统添加对kibana的登录认证 关于elk系统的安装配置可以参考:Centos6.5安装Logstash ELK stack 日志管理系统及使用详解 http://blog.csdn.net/ ...