洛谷P1415 拆分数列(dp)
题目链接:传送门
题目:
题目背景 【为了响应党中央勤节俭、反铺张的精神,题目背景描述故事部分略去^-^】
题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数。如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小;如果有多组解,则使得第一个数尽量大;如果仍有多组解,则使得第二个数尽量大,依次类推……)。
输入输出格式
输入格式: 共一行,为初始的数字。 输出格式: 共一行,为拆分之后的数列。每个数之间用逗号分隔。行尾无逗号。 输入输出样例
输入样例#: [] [] [] [] [] 输出样例#: []
,,,
[]
,
[]
,,
[] []
, 说明 【题目来源】 lzn改编 【数据范围】 对于10%的数据,输入长度<= 对于30%的数据,输入长度<= 对于50%的数据,输入长度<= 对于100%的数据,输入长度<=
dp练得还是太少了呀。其实复杂dp和大模拟很像,要从每个细节考虑,逐个击破,囫囵吞枣使不得。刚开始我乍一看贪心可用,强行贪心搜索,实际上时间复杂度没考虑,很多细节也没考虑到。。。而且搜索写得还很麻烦,写完了还很多bug,加了一通乱七八糟的特判,最后还是以WA告终。。。
思路:
·第一步:
根据题意,当然要先找最小的最后一个数。本来想贪心地从后开始搜索,第一个满足条件的就是最小,但是发现遇到0的时候状况千变万化,很难控制:比如:
100 000 104 123
搜索过程中会出现以下的情况:
① 100000 > 104,不满足
② 10000 > 0104,不满足
③ 1000 > 00104,不满足
像这样,连续出现的0会导致每次搜索失败都要回到之前的位置101,而不能直接回到最后一个数123,这就导致这样搜索的时间复杂度是指数级的,不可用。
但是从后往前找又想不到什么办法记录状态,不能用dp来做,僵硬。。。
于是想到考虑一个子问题:
子串被分割成若干个严格递增的数后,使得最后一个数最小时,找到最小的最后一个数。
然后可以惊奇地发现,如果之前的所有子串都计算完了,长度+1之后可以利用之前的结果:
假设当前位置是i,如果[0, j-1]的子串的最小的最后一个数是a,那么只要a < [j, i]的子串对应的数,那么到位置i为止的最后一个数就可以是[j, i],只要从后往前枚举j,找到的第一个满足条件a < [j, i]的j,对应的[j, i]就是要找的最小的数了,时间复杂度大概是O(n2)。
不过这还没完。“如果有多组解,使得第一个数尽量大”。。。
·第二步:
我们想要找到最大第一个数,首先就要使第二个数尽量大,然后在这之前要使第三个数尽量大,再在之前就是第四个数尽量大。。。。所以考虑从后往前找,但是直接跑一遍还是会遇到刚开始的搜索的问题(多个零导致指数级时间),比如:
1234765
最后一个数最小是765,然后往前贪心的话找到的会是最大的234,但是234被用掉之后第一个只剩下1。而我们可以发现12,34,765也是满足题意的,12显然比1大,不妥QWQ。
对于每个位置的决策,不仅仅取决于右边相邻的一个位置,还取决于右边的右边,以及右边的右边的右边……的位置。于是还是要回到动态规划上面来。重复利用之前的状态:
对于每个位置j,子串[j, N]的第一个数会有一个最大值(当然是在第一步割出最小的最后一个数之后),这个最大值可以用于更新在位置j之前的所有位置i的对应子串[i, N]的第一个数的最大值。
状态&状态转移方程见代码
时间复杂度是O(n2)
#include <bits/stdc++.h> using namespace std;
const int MAX_N = ; string s;
int a[MAX_N], len;
int st[MAX_N], ed[MAX_N];
//st 开始坐标, ed 结束坐标 bool cmp(int st1, int ed1, int st2, int ed2)
{
while (st1 <= ed1 && a[st1] == )
st1++;
while (st2 <= ed2 && a[st2] == )
st2++;
int len1 = ed1 - st1 + ;
int len2 = ed2 - st2 + ;
if (len1 < len2)
return true;
if (len1 > len2)
return false;
for (int i = ; i < len1; i++) {
if (a[st1+i] < a[st2+i])
return true;
if (a[st1+i] > a[st2+i])
return false;
}
return false;
} void dp2()
{
memset(ed, , sizeof ed);
ed[st[len]] = len;
int ind = st[len]-;
while (ind >= && !a[ind])
ed[ind--] = len;
for (int i = st[len]-; i >= ; i--) {
ed[i] = max(ed[i], i);
for (int j = st[len]-; j > i; j--)
if (cmp(i, j, j+, ed[j+])) {
ed[i] = max(ed[i], j);
break;
}
}
} void dp()
{
st[] = ;
for (int i = ; i <= len; i++) {
st[i] = ;
for (int j = i; j >= ; j--)
if (cmp(st[j-], j-, j, i)) {
st[i] = j;
break;
}
}
} int main()
{
cin >> s;
len = s.size();
for (int i = ; i < len; i++)
a[i+] = s[i] - '';
dp();
dp2();
bool firstprint = true;
for (int i = ; i <= len; i++) {
if (firstprint)
firstprint = false;
else
putchar(',');
for (int j = i; j <= ed[i]; j++) {
putchar(s[j-]);
}
i = ed[i];
}
cout << endl;
return ;
}
洛谷P1415 拆分数列(dp)的更多相关文章
- 洛谷P1415 拆分数列[序列DP 状态 打印]
题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...
- 洛谷 P1415 拆分数列 解题报告
拆分数列 题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数. 如果有多组解,则输出使得最后一个 ...
- 洛谷P1415 拆分数列
题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...
- 洛谷P4063 [JXOI2017]数列(dp)
题意 题目链接 Sol 这题想还是不难想的,就是写起来很麻烦,然后去看了一下loj的最短代码表示只能Orz 首先不难发现一条性质:能够选择的区间一定是不断收缩的,而且新的可选区间一定是旧区间的某个位置 ...
- P1415 拆分数列 DP
传送门: 题意: 将一个数字串分成许多不同的小串,使得这些小串代表的数字严格递增,要求最后一个数字尽可能地小. 然后满足字典序尽可能大. 思路: 由于最后一个数字要尽可能地小,所以先处理出每个数的L[ ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...
- 洛谷P1244 青蛙过河 DP/思路
又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...
- 洛谷P3928 Sequence2(dp,线段树)
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...
随机推荐
- Java数组,导入包,foreach控制循环
总见流星过,火花转瞬逝.何时见春雨,润物细无声. 导入包,例使用Scanner工具类,需要导入包: import java.util.Scanner; ************ ********** ...
- GsonFormat根据返回值json快速构建Model
Json是一个插件,我们只需要在Android studio中进行安装一下,即可使用. 根据平时的操作,根据浏览器中返回中的数据一行一行敲,其实这样非常麻烦. 有一个简单的方法,可以瞬间生成一个实体类 ...
- laravel框架5.2版本组件包开发
一.包的作用 1 把功能相似或相关的类或接口组织在同一个包中,方便类的查找和使用. 2 如同文件夹一样,包也采用了树形目录的存储方式.同一个包中的类名字是不同的,不同的包中的类的名字是可以相同的, ...
- 实现django admin后台到xadmin后台的转变
虽然不做前端,还是喜欢好看的东西~.~ 之前同事估计也是功能实现没空管这个后台,前段时间闲的,稍微改了下外貌,前后对比下: Python3.5+Django1.9.7+Xadmin0.6.1 步骤如下 ...
- jsp下载excel文件
jsp下载excel文件的的实现方法很多,今天也遇到这个问题,乱敲了一阵,终于搞定了,记下来和朋友们分享吧. 假设需要下载excel文件的jsp页面名为:down.jsp 对应的后台action名为: ...
- 数据库-->表操作
一.MySQL存储引擎 # InnoDB MySql 5.6 版本默认的存储引擎.InnoDB 是一个事务安全的存储引擎,它具备提交.回滚以及崩溃恢复的功能以保护用户数据.InnoDB 的行级别锁定以 ...
- hdu 1754解题报告 (代码+注释)
I Hate It Time Limit: 3000MS Memory Limit: 32768 K Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问, ...
- SharePoint REST API - REST请求导航的数据结构
博客地址:http://blog.csdn.net/FoxDave 从一个既定的URL获取其他SharePoint资源 当你用SharePoint REST服务进行开发的时候,你经常会从指定的一个 ...
- 2.Python爬虫入门二之爬虫基础了解
1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来.想抓取什么?这个由你来控制它咯. ...
- <HBase><Scan>
Overview The Scan operation for HBase. Scan API All operations are identical to Get with the excepti ...