转自:http://blog.csdn.net/abcjennifer/article/details/7359370

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。

ROC曲线的例子

  考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

  列联表如下表所示,1代表正类,0代表负类。

从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。

其中,两列True matches和True non-match分别代表应该匹配上和不应该匹配上的

两行Pred matches和Pred non-match分别代表预测匹配上和预测不匹配上的

FPR = FP/(FP + TN) 负样本中的错判率(假警报率)

TPR = TP/(TP + FN) 判对样本中的正样本率(命中率)

ACC = (TP + TN) / (P+N) 判对准确率

  在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。

ROC曲线和它相关的比率

(a)理想情况下,TPR应该接近1,FPR应该接近0。

ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。

比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)

(b)随着阈值theta增加,TP和FP都减小,TPR和FPR也减小,ROC点向左下移动;

  Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即假正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。

此外,ROC曲线还可以用来计算“均值平均精度”(mean average precision),这是当你通过改变阈值来选择最好的结果时所得到的平均精度(PPV).

  下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。

其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。

ROC曲线(receiver-operating-characteristic curve)-阈值评价标准(转)的更多相关文章

  1. ROC曲线(Receiver Operating Characteristic Curve)

    分类模型尝试将各个实例(instance)划归到某个特定的类,而分类模型的结果一般是实数值,如逻辑回归,其结果是从0到1的实数值.这里就涉及到如何确定阈值(threshold value),使得模型结 ...

  2. ROC曲线 Receiver Operating Characteristic

    ROC曲线与AUC值   本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://b ...

  3. ROC曲线-阈值评价标准

    ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性 ...

  4. 机器学习:评价分类结果(ROC 曲线)

    一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...

  5. PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision

    作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...

  6. ROC曲线和PR曲线

    转自:http://www.zhizhihu.com/html/y2012/4076.html分类.检索中的评价指标很多,Precision.Recall.Accuracy.F1.ROC.PR Cur ...

  7. (原+转)ROC曲线

    转自:http://baike.baidu.com/link?url=_H9luL0R0BSz8Lz7aY1Q_hew3JF1w-Zj_a51ggHFB_VYQljACH01pSU_VJtSGrGJO ...

  8. ROC曲线的计算

    1.ROC曲线简介 在评价分类模型时,会用到ROC(receiver operating characteristic)曲线.ROC曲线可用来评价二元分类器( binary classifier)的优 ...

  9. ROC曲线的概念和意义

    ROC曲线 受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve).得此名的原因 ...

随机推荐

  1. gcc,make,cmake

    1.gcc是GNU Compiler Collection(就是GNU编译器套件),也可以简单认为是编译器,它可以编译很多种编程语言(括C.C++.Objective-C.Fortran.Java等等 ...

  2. cmd copy命令 文件复制【转】

    本文转载自:https://www.jb51.net/article/18981.htm copy,中文含义为“复制”,一个很容易见名知意的命令,它的作用是复制文件,用法十分简单:copy 源文件 目 ...

  3. C语言goto语句的使用

    不使用goto语句: 使用goto语句: 使用goto语句时需要注意以下原则:1) 不要过份地使用.比如图2中的60行就没有采用goto语句跳到程序的最后面,之所以这里不使用goto是为了阅读方便.因 ...

  4. HDU 1392 Surround the Trees(凸包)题解

    题意:给一堆二维的点,问你最少用多少距离能把这些点都围起来 思路: 凸包: 我们先找到所有点中最左下角的点p1,这个点绝对在凸包上.接下来对剩余点按照相对p1的角度升序排序,角度一样按距离升序排序.因 ...

  5. 比赛总结——atcoder beginner contest 109

    第一次AK的ABC 虽然题非常简单 但是值得纪念一下 T1 一道很水的题 不存在做法 纯粹乱跑 但是我把Yes打成YES了,哭唧唧 #include <cstdio> #include & ...

  6. (zhuan) 资源|TensorFlow初学者必须了解的55个经典案例

    资源|TensorFlow初学者必须了解的55个经典案例 2017-05-27 全球人工智能 >>>>>>欢迎投稿:news@top25.cn<<< ...

  7. webpack插件配置(一) webpack-dev-server 路径配置

    本文的路径配置主要涉及到webpack.config.js文件中devServer与output两个选项的配置 webpack-dev-server定义 webpack-dev-server主要是启动 ...

  8. Codeforces 629 E. Famil Door and Roads

    题目链接:http://codeforces.com/problemset/problem/629/E 询问这个简单环的期望.考虑将这个环拆成两部分. 令${deep[x]>=deep[y]}$ ...

  9. Intellij idea注册码失效

    从网上下载idea需要输入激活码,晚上用的激活码大多是同一个,但是上次使用的时候突然弹窗告诉我注册码失效了,在网上找到一个新的方法 在注册界面有几个选项,我们常用的是Activation Code,现 ...

  10. python2.7使用requests时报错SSLError: HTTPSConnectionPool(host='b-ssl.duitang.com', port=443)

    import requests url='https://www.duitang.com/napi/blog/list/by_search/?kw=%E6%A0%A1%E8%8A%B1&sta ...