传送门啦

思路:

$ f[i][j] $ 表示从 $ i $ 开始,包含 $ 1<<j $ 个元素的区间的区间最大值;

转移方程: $ f[i][j]=max_(f[i][j-1],f[i+(1<<j-1)][j-1] $ ;

查询 $ (l,r) $ :

$ p=log_2(r-l+1) $ ;

$ max(l,r)=max(f[l][p],f[r-(1<<p)+1][p]) $ ;

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define re register
using namespace std ; int n , m , a[100005] , l , r ;
int f[10000010][21] ; inline int read () {
int f = 1 , x = 0 ;
char ch = getchar () ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1 ; ch = getchar () ;}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0' ; ch = getchar () ;}
return x * f ;
} inline void st(int x) {
for(re int i = 1 ; i <= 21 ; ++ i)
for(re int j = 1 ; j + (1 << i) <= x + 1 ; ++ j)
f[j][i] = max(f[j][i - 1] , f[j + (1 << (i -1))][i - 1]) ;
} inline int query(int l , int r) {
int k = log2(r - l + 1) ;
return max(f[l][k] , f[r - (1 << k) + 1][k]) ;
} int main () {
n = read () ; m = read () ;
for(re int i = 1 ; i <= n ; ++ i) {
f[i][0] = read () ;
}
st(n) ;
for(re int i = 1 ; i <= m ; ++ i) {
l = read () ; r = read () ;
printf("%d\n" , query(l , r)) ;
}
return 0 ;
}

洛谷P3865 ST表的更多相关文章

  1. 洛谷 P3865 ST表

    ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到O(nlogn)预处理,O(1)查询最值 是一种处理静态区间可重复计算问题的数据结构,一般也就求求最大最小值 ...

  2. 洛谷—— P3865 【模板】ST表

    https://www.luogu.org/problemnew/show/P3865 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每 ...

  3. 洛谷 P3865 【模板】ST表

    P3865 [模板]ST表 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为  ...

  4. [洛谷P3865]【模板】ST表

    题目大意:区间静态最大值 题解:ST表,zkw线段树 ST表: st[i][j]存[i,i+$j^{2}$-1]的最大值,查询时把区间分成两个长度相同的小区间(可重复) #include<cst ...

  5. skkyk:题解 洛谷P3865 【【模板】ST表】

    我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你 ...

  6. 洛谷 P3865 【模板】ST表(模板)

    嗯... 题目链接:https://www.luogu.com.cn/problem/P3865 ST(Sparse Table)算法,运用了倍增的思想. 我们令f[i][k]数组表示区间[i, i ...

  7. [NOIP1999] 提高组 洛谷P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  8. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  9. (模拟) codeVs1083 && 洛谷P1014 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...

随机推荐

  1. AtomicInteger和count++的比较

    J2SE 5.0提供了一组atomic class来帮助我们简化同步处理.基本工作原理是使用了同步synchronized的方法实现了对一个long, integer, 对象的增.减.赋值(更新)操作 ...

  2. printf()格式化输出详解

    % - 0 m.n l或h 格式字符 下面对组成格式说明的各项加以说明: ①%:表示格式说明的起始符号,不可缺少. ②-:有-表示左对齐输出,如省略表示右对齐输出. ③0:有0表示指定空位填0,如省略 ...

  3. Random类(随机数)

    前言:总是忘记怎么用.上网一查,都是些有的没的...... 最简单却最常用的方法:Random.Next方法 首先,为Random类实例化一个对象: Random n=new Random(); Ne ...

  4. 原生js轮播图实现

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. Linux记录-普通用户下执行sudo xxx 找不到命令解决方案

    chmod 777 /etc/sudoers vim /etc/sudoers 1.可以使用 secure_path 指令修改 sudoers 中默认的 PATH为你想要的路径.这个指令指定当用户执行 ...

  6. cdqz2017-test8-Tree(点分树)

    n个点的带点权带边权的树,设点权为a[i],边权为b[i] 一棵树有n*(n-1)/2个点对, 定义这棵树的价值为任意两点对的(a[x]^a[y])*dis(x,y) 有m次修改一个点的点权的操作 输 ...

  7. LaTeX简历模板

    %# -*- coding:utf-8 -*- %% start of file `template_en.tex'. %% Copyright 2006-1008 Xavier Danaux (xd ...

  8. JavaScript常用函数总结

    1.test()方法 var str = "wzltestreg"; var reg = new RegExp("wzl", ""); al ...

  9. VS中空项目、win32项目、控制台程序的区别(转)

    空项目,大多数想单纯创建c++工程的新同学,打开vs后很可能不知道选择创建什么工程,这时候请相信我,空项目是你最好的选择.因为空工程不包含任何的源代码文件,接下来你只需要在相应的源代码文件夹和头文件文 ...

  10. [NOIP2012提高]借教室 题解(二分答案+差分)

    [NOIP2012提高&洛谷P1083]借教室 Description 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室 ...