hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.
Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
矩阵快速幂
#include<stdio.h>
#include<string.h>
#include<math.h>
typedef long long ll;
const int mod=; struct mat{
int r,c;
int m[][]; //经测试最大开成590*590的 ll 型矩阵
mat(){}
mat(int r,int c):r(r),c(c){}
void clear(){
memset(m,,sizeof(m));
} mat operator+(mat a)const{
mat ans(r,c);
for(int i=;i<=r;i++){
for(int j=;j<=c;j++){
ans.m[i][j]=(m[i][j]+a.m[i][j])%mod;
}
}
return ans;
} mat operator*(mat a)const{
mat tmp(r,a.c);
int i,j,k;
for(i=;i<=tmp.r;i++){
for(j=;j<=tmp.c;j++){
tmp.m[i][j]=;
for(k=;k<=c;k++){
tmp.m[i][j]=(tmp.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
}
}
}
return tmp;
} mat operator^(int n)const{ //需要时可以用 ll n,注意运算符优先级比较低,多用括号;
mat ans(r,r),tmp(r,r);
memcpy(tmp.m,m,sizeof(tmp.m));
ans.clear();
for(int i=;i<=ans.r;i++){
ans.m[i][i]=;
}
while(n){
if(n&)ans=ans*tmp;
n>>=;
tmp=tmp*tmp;
}
return ans;
} void print()const{
for(int i=;i<=r;i++){
for(int j=;j<=c;j++){
printf("%d",m[i][j]);
if(j==c)printf("\n");
else printf(" ");
}
}
} }; int m1[][],m2[][],tmp[][],tmp2[][],tmp3[][]; int main(){
int n,k;
while(scanf("%d%d",&n,&k)!=EOF&&n+k){
int i,j,p;
for(i=;i<=n;i++){
for(j=;j<=k;j++)scanf("%d",&m1[i][j]);
}
for(i=;i<=k;i++){
for(j=;j<=n;j++)scanf("%d",&m2[i][j]);
}
for(i=;i<=k;i++){
for(j=;j<=k;j++){
tmp[i][j]=;
for(p=;p<=n;p++){
tmp[i][j]+=m2[i][p]*m1[p][j];
}
tmp[i][j]%=;
}
}
mat a(k,k);
memcpy(a.m,tmp,sizeof(tmp));
a=(a^(n*n-));
memcpy(tmp,a.m,sizeof(tmp));
for(i=;i<=n;i++){
for(j=;j<=k;j++){
tmp2[i][j]=;
for(p=;p<=k;p++){
tmp2[i][j]+=m1[i][p]*tmp[p][j];
}
tmp2[i][j]%=;
}
}
for(i=;i<=n;i++){
for(j=;j<=n;j++){
tmp3[i][j]=;
for(p=;p<=k;p++){
tmp3[i][j]+=tmp2[i][p]*m2[p][j];
}
tmp3[i][j]%=;
}
}
int ans=;
for(i=;i<=n;i++){
for(j=;j<=n;j++)ans+=tmp3[i][j];
}
printf("%d\n",ans);
}
return ;
}
hdu4965 Fast Matrix Calculation 矩阵快速幂的更多相关文章
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
随机推荐
- git-github-TortoiseGit综合使用教程(二)快速入门
:建立版本库 在github网站上创建一个版本库,并复制clone地址. git@github.com:jackadam1981/Flask_Base.git https://github.com/j ...
- tomcat 线程数与 mysql 连接数综合调优
目前线上系统包含 数据收集+数据分析+中心服务,三个均为 tomcat,共用一个mysql服务. 由于tomcat最大线程数200 *3 =600,最大并发时,会有600个jdbc连接.当然这是极端情 ...
- asp.net MVC之Action过滤器浅析
在asp.net MVC中,Action过滤器是一大利器,它可以在以下两个步骤执行相关的代码: 1.执行Action方法之前:OnActionExecuting 2.Action方法执行完毕后:OnA ...
- 从头入手jenkins
前段时间项目处在测试阶段.5个测试妹子围着转,你不知道幸福的啊. 项目一共有开发.测试.生产三个环境,每次打包要切换分支代码,然后使用Xcode打包,然后生成ipa,再上传到蒲公英或者fir给测试妹子 ...
- xshell无法在小键盘输入数字
自从很久之前用小键盘输入数字后出现奇怪的字母并换行后就不用小键盘,今天脑抽又用小键盘写数字,并决定解决问题. 原因分析: 当xshell终端类型不是"VT220"或者"A ...
- border_mode
如果border_mode选择为same,那么卷积操作的输入和输出尺寸会保持一致.如果选择valid,那卷积过后,尺寸会变小 # apply a 3x3 convolution with 64 out ...
- DevExpress v18.1新版亮点——Analytics Dashboard篇(一)
用户界面套包DevExpress v18.1日前正式发布,本站将以连载的形式为大家介绍各版本新增内容.本文将介绍了DevExpress Analytics Dashboard v18.1 的新功能,快 ...
- PM2报错‘Spawning PM2 daemon with pm2_home...’的解决方案
问题 在某次因为SRE升级域名问题,导致了Node服务器代码死循环了,产生的504(Gateway timeout)错误. 登录到机器上看,正在用pm2查问题的原因中,突然发现错误从504变成的502 ...
- GNU C的定义长度为0的数组
在标准C和C++中,长度为0的数组是被禁止使用的.不过在GNU C中,存在一个非常奇怪的用法,那就是长度为0的数组,比如Array[0];很多人可能觉得不可思议,长度为0的数组是没有什么意义的,不过在 ...
- layer 问题 汇总
1.搭配iframe 子页面遮罩层 覆盖父页面 window.parent.layer.open({ // type: 1, //skin: 'layui-layer-rim', //加上 ...