1.基础属性:

 array = np.array([[1,2,3],[2,3,4]])  #列表转化为矩阵
print('number of dim:',array.ndim) # 维度
# number of dim: 2 print('shape :',array.shape) # 行数和列数
# shape : (2, 3) print('size:',array.size) # 元素个数
# size: 6

创建array:注意其形式为([,,,])      ,若为矩阵其形式为([[,,,],[,,,]])

a = np.array([2,23,4])  # list 1d

a = np.array([2,23,4],dtype=np.float)       #指定数据类型

a = np.zeros((3,4)) # 数据全为0,3行4列

a = np.arange(10,20,2)                          # 10-19 的数据,2步长,常用创建区间数组

a = np.arange(12).reshape((3,4))    # 3行4列,0到11      #改变形状

2.基础计算:

在Numpy中,想要求出矩阵中各个元素的乘方需要依赖双星符号 **,以二次方举例,即:

c = a**2 

矩阵乘法:

c = a.dot(b)

对矩阵中的元素操作:
np.sum(a)   
np.min(a)  
np.max(a)

其中的 argmin()argmax() 两个函数分别对应着求矩阵中最小元素和最大元素的索引

print(np.mean(A))  均值

A.T即为转置矩阵

A = np.arange(3,15).reshape((3,4))        #将一个一维的数据转换为矩阵

A.flatten()                                           #将一个多维平铺成一维数组

for item in A.flat:

  print(item)              #flat为一个迭代器对象

3.numpy合并与分割:

np.vstack((A,B))上下合并

np.hstack((A,B))左右合并

把一些序列并不表示矩阵的转换为矩阵:

 print(A[np.newaxis,:])
# [[1 1 1]] print(A[np.newaxis,:].shape)
# (1,3) print(A[:,np.newaxis].shape)
# (3,1)

对于多个序列的合并采用另外一个函数:

 C = np.concatenate((A,B,B,A),axis=0)

 print(C)
"""
array([[1],
[1],
[1],
[2],
[2],
[2],
[2],
[2],
[2],
[1],
[1],
[1]])
""" D = np.concatenate((A,B,B,A),axis=1) print(D)
"""
array([[1, 2, 2, 1],
[1, 2, 2, 1],
[1, 2, 2, 1]])
"""

axis参数控制单列(0)或者单行(1),0是竖向,1是横向

vertical垂直的

numpy的分割具体使用参考莫烦python教程:

https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-7-np-split/

添加:

在数据归一化的时候使用Numpy对数据的形状进行调整。

把一维的列表或者数组调整成多维一个值的矩阵,先使用np.array转换成numpy数组,再使用shuzu.reshape(94,1)

pandas

1.Series是一个带索引的序列

2.DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。

DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。取某一列元素可以直接用df[列名],返回的值是一个Series。

 dates = pd.date_range('',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df)
"""
a b c d
2016-01-01 -0.253065 -2.071051 -0.640515 0.613663
2016-01-02 -1.147178 1.532470 0.989255 -0.499761 """

print(df2.columns)           #每种数据的名称

print(df2.sort_values(by='B'))      #对数值进行排序

3.通过标签来筛选数据

 print(df.loc[''])
"""
A 4
B 5
C 6
D 7
Name: 2013-01-02 00:00:00, dtype: int64
""" print(df.loc[:,['A','B']])
"""
A B
2013-01-01 0 1
2013-01-02 4 5
2013-01-03 8 9
2013-01-04 12 13
2013-01-05 16 17
2013-01-06 20 21
""" print(df.loc['',['A','B']])
"""
A 4
B 5
Name: 2013-01-02 00:00:00, dtype: int64
"""

使用标签来选择数据 loc,选择几列或者几行

使用ix来混合列组合

 print(df.ix[:3,['A','C']])
"""
A C
2013-01-01 0 2
2013-01-02 4 6
2013-01-03 8 10
"""

print(df[df.A>8])            # 还可以使用判断条件来进行筛选。

4.修改数据

我们可以利用索引或者标签确定需要修改值的位置

根据条件设置:df.B[df.A>4] = 0

添加数据:

df['E'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101',periods=6))       #长度必须对齐

5.数据清理

删除值为nan的数据

 df.dropna(
axis=0, # 0: 对行进行操作; 1: 对列进行操作
how='any' # 'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop
)

如果是将 NaN 的值用其他值代替, 比如代替成 0:

df.fillna(value=0)

判断是否有缺失数据 NaN, 为 True 表示缺失数据:

 df.isnull()
"""
A B C D
2013-01-01 False True False False
2013-01-02 False False True False

检测数据中是否有缺失值:

np.any(df.isnull()) == True 
# True

6.pandas读入与保存,两种简单例子如下

read读入          data = pd.read_csv('student.csv'),读入进来就是dataframe格式,自动添加行号

to 保存     data.to_pickle('student.pickle')

7.pandas的合并

concat合并方式:

0是纵向,1是横向

res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)      重置index

append合并方式:只有纵向合并

res = df1.append(df2, ignore_index=True)

res = df1.append([df2, df3], ignore_index=True)    #合并多个,且都是忽略索引值

join定义列名的合并方式:具体见代码

 #定义资料集
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) #纵向"外"合并df1与df2
res = pd.concat([df1, df2], axis=0, join='outer') print(res)
# a b c d e
# 1 0.0 0.0 0.0 0.0 NaN
# 2 0.0 0.0 0.0 0.0 NaN
# 3 0.0 0.0 0.0 0.0 NaN
# 2 NaN 1.0 1.0 1.0 1.0
# 3 NaN 1.0 1.0 1.0 1.0
# 4 NaN 1.0 1.0 1.0 1.0 ########下面这个只有相同列名的保存,其他的抛弃
res = pd.concat([df1, df2], axis=0, join='inner') #打印结果
print(res)
# b c d
# 1 0.0 0.0 0.0
# 2 0.0 0.0 0.0
# 3 0.0 0.0 0.0
# 2 1.0 1.0 1.0
# 3 1.0 1.0 1.0
# 4 1.0 1.0 1.0

8,pandas画图函数

plt.plot()折线图

plt.scatter()散点图

具体形式实际应用查询,不需详细记忆。

												

numpy&pandas笔记的更多相关文章

  1. Numpy&Pandas

    Numpy & Pandas 简介 此篇笔记参考来源为<莫烦Python> 运算速度快:numpy 和 pandas 都是采用 C 语言编写, pandas 又是基于 numpy, ...

  2. Ipython自动导入Numpy,pandas等模块

    一.引言 最近在学习numpy,书上要求安装一个Ipythpn,可以自动导入Numpy,pandas等数据分析的模块,可是当我安装后,并不能自动导入numpy模块,还需要自己import.我就去查了一 ...

  3. NumPy学习笔记 三 股票价格

    NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...

  4. NumPy学习笔记 二

    NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  5. NumPy学习笔记 一

    NumPy学习笔记 一 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

  6. python 数据分析工具之 numpy pandas matplotlib

    作为一个网络技术人员,机器学习是一种很有必要学习的技术,在这个数据爆炸的时代更是如此. python做数据分析,最常用以下几个库 numpy pandas matplotlib 一.Numpy库 为了 ...

  7. numpy 学习笔记

    numpy 学习笔记 导入 numpy 包 import numpy as np 声明 ndarray 的几种方法 方法一,从list中创建 l = [[1,2,3], [4,5,6], [7,8,9 ...

  8. 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark

    有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...

  9. 第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn

    本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 ...

随机推荐

  1. TensorRT 不支持Tensorflow的操作有如下

    tf.unpack, tf.slice, tf.tile, tf.expand_dims, tf.fill, tf.cast, tf.floor_div, tf.range 比较坑,所以你必须限制你的 ...

  2. 用CountDownLatch提升请求处理速度

    countdownlatch是java多线程包concurrent里的一个常见工具类,通过使用它可以借助线程能力极大提升处理响应速度,且实现方式非常优雅.今天我们用一个实际案例和大家来讲解一下如何使用 ...

  3. Js高设笔记 & 声明变量与初始化变量

    第三章 数据类型   P25 1, var message;   //age变量尚未声明 alert(message);  //"undefined" alert(age);   ...

  4. bitmq集群高可用测试

    Rabbitmq集群高可用 RabbitMQ是用erlang开发的,集群非常方便,因为erlang天生就是一门分布式语言,但其本身并不支持负载均衡. Rabbit模式大概分为以下三种:单一模式.普通模 ...

  5. ANT入门&用ANT编译java项目

    第一次接触ant是15年在无锡某软件公司实习时,当时的项目是由多个模块组成,开发分成模块开发的几个小组.为了提高开发效率,采用这种编译项目的方法. 最近接触到flex项目,采用eclipse自动编译的 ...

  6. linux学习:【第1篇】初识Linux及安装

    狂神声明 : 文章均为自己的学习笔记 , 转载一定注明出处 ; 编辑不易 , 防君子不防小人~共勉 ! linux学习:[第1篇]初识Linux及安装 写在前面 学习之初看了一段文章,很有感触,所以也 ...

  7. SQLAlchemy中时间格式化及将时间戳转成对应时间的方法-mysql

    https://blog.csdn.net/guoqianqian5812/article/details/80175866 方法很简答,都是借助于mysql数据库提供的函数将时间格式化方法 func ...

  8. MovieLens电影数据分析

    下载数据包 链接:https://grouplens.org/datasets/movielens/1m/ 解压: 四个文件分别是数据介绍,电影数据表,电影评分表,用户表 进行电影数据分析 进入ipy ...

  9. 洛谷P3233 世界树 [HNOI2014] 虚树

    正解:虚树 解题报告: 传送门! 首先看到这种就要想到虚树这个是毫无疑问的QwQ 建虚树什么的都可以循规蹈矩地做,不说辣,具体可以看下虚树学习笔记什么的看下板子 但是建好虚树之后怎么搞还是有点儿讲究, ...

  10. iOS 允许po打印frame等内容

    终端: 1. touch ~/.lldbinit 2. echo display @import UIKit >> ~/.lldbinit 3. echo target stop-hook ...