【noip模拟赛7】上网 线性dp
描述
假设有n个人要上网,却只有1台电脑可以上网。上网的时间是从1 szw 至 T szw ,szw是sxc,zsx,wl自创的时间单位,至于 szw怎么换算成s,min或h,没有人清楚。依次给出每个人在某个时间段内上网的快乐程度C(必须这个人在整个时间段内都在上网,才能获得快乐程度C,否则,快乐程度是0),请你得到使总的快乐程度达到最大的方案。
输入
第1行2个整数 n和T,含义如题目所述;
接下来有n个这样的结构(每两个相邻的结构之间有一空行,且第1个结构和第一行间有一空行):
第1行一个整数Mi,表示第i个人的时间段的个数;
接下来有Mi行,每行3个整数Xj,Yj,C,表示第i个人在[Xj,Yj]内上网的快乐程度为C,
因此有Xj-Yj-1=1,X1=1,Ymi=T,Xj<=Yj。
输出
仅输出一行,为总的最大的快乐程度。
输入样例 1
3 10 3
1 3 6
4 7 9
8 10 3 3
1 3 5
4 7 10
8 10 1 4
1 3 2
4 8 2
9 9 6
10 10 3
输出样例 1
25
提示
【样例说明】
在[1,3]内,安排1上网,快乐程度为6;
在[4,7]内,安排2上网,快乐程度为10;
在[8,8]内,不安排;
在[9,9]内,安排3上网,快乐程度为6;
在[10,10]内,安排3上网,快乐程度为3;
这是使总的快乐程度达到最大的方案,对应的值是25。
【数据范围】
对于30%的数据,n<=4,所有的Mi<=5,T<=20;
对于60%的数据,n<=100,所有的Mi<=100,T<=2000;
对于100%的数据,n<=500,所有的Mi<=500,T<=500000,所有的0<C<=10^9,并保证最终解Max<=10^9。
以结束时间来dp即可 和背包没什么两样
注意其中的一个细节 因为这个wa了一次
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 1000+50
struct node
{
int s,e,v; }s[+];
vector<int>tim[+];
long long dp[+];
int main()
{
int n,T;
RII(n,T);
int cnt=;
rep(i,,n)
{
int q;
RI(q);
while(q--)
{
int a,b,c;
RIII(a,b,c);
if(b>T)continue;
s[++cnt].s=a;
s[cnt].e=b;
s[cnt].v=c;
tim[b].pb(cnt);
}
}
rep(i,,T)
{
dp[i]=dp[i-];
if(tim[i].size() )
rep(j,,tim[i].size()-)
{
int u=tim[i][j];
dp[i]=max(dp[i],dp[i-(s[u].e-s[u].s+)]+s[u].v );//注意这里一定要加一 举个起点和终点相等的例子即可
}
}
cout<<dp[T];
return ;
}
【noip模拟赛7】上网 线性dp的更多相关文章
- 【NOIP模拟赛】超级树 DP
这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...
- [noip模拟赛]某种数列问题<dp>
某种数列问题 (jx.cpp/c/pas) 1000MS 256MB 众所周知,chenzeyu97有无数的妹子(阿掉!>_<),而且他还有很多恶趣味的问题,继上次纠结于一排妹子的排法以 ...
- 2018.11.03 NOIP模拟 地球发动机(线性dp)
传送门 考试5分钟写完. 如果没这题今天多半爆零了(汗 直接二分出合法的转移范围. 然后用后面的状态更新前面的就可以了. 代码
- NOIp模拟赛 巨神兵(状压DP 容斥)
\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...
- 【noip模拟赛5】细菌 状压dp
[noip模拟赛5]细菌 描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...
- NOIP模拟赛20161022
NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...
- NOIP模拟赛 by hzwer
2015年10月04日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...
- 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程
数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...
- 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1
题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...
- CH Round #58 - OrzCC杯noip模拟赛day2
A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...
随机推荐
- 【转】Robot Framework作者建议如何选择自动化测试框架
原文:http://www.infoq.com/cn/news/2012/06/robot-author-suggest-autotest 软件自动化测试,作为手工测试的替代,越来越受到关注.Pekk ...
- offset[Parent/Width/Height/Top/Left] 、 client[Width/Height/Top/Left] 、 Element.getBoundingClientRect()
开篇提示:以下内容都经个人测试,参考API文档总结,但还是不能保证完全正确,若有错误,还请留言指出___________________________________________________ ...
- Java——集合
Java的集合类是一种非常有用的工具类,用于存储多个对象.它是一个容器,可以把多个对象放到里面. Java集合分三种情况: Set:无序.不可重复 List:有序.可重复 Map:具有映射关系 Col ...
- 前段clam安装
前端模块化协同开发解决方案 —— clam 1. 打开后直接看最后一条https://blog.csdn.net/zhangwenwu2/article/details/581720422. node ...
- Java垃圾回收机制复习
一.如何确定某个对象是“垃圾” 二.典型的垃圾收集算法 三.典型的垃圾收集器 JVM(HotSpot) 7种垃圾收集器的特点及使用场景 https://www.cnblogs.com/chengxuy ...
- Android如何降低service被杀死概率
http://www.jianshu.com/p/06a1a434e057 http://www.cnblogs.com/ylligang/articles/2665181.html Android应 ...
- Shiro简介及入门(四)
1.1 什么是shiro shiro是apache的一个开源框架,是一个权限管理的框架,实现 用户认证.用户授权. spring中有spring security (原名Acegi),是一个权 ...
- window系列
1.关闭浏览器单个网页 ctrl+W 2.远程桌面连接 mstsc
- MySQL— 进阶
目录 一.视图 二.触发器 三.函数 四.存储过程 五.事务 一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集 ...
- cmake介绍
1. cmake介绍 1.1 cmake用途 CMake的用途是能通过一系列的源码和相关的配置来生成需要的编译器平台上的项目文件.譬如,如果一个项目需要在Windows上用VS编译,在Linux上用m ...