在模型完成训练后,我们需要将训练好的模型保存为一个文件供测试使用,或者因为一些原因我们需要继续之前的状态训练之前保存的模型,那么如何在PyTorch中保存和恢复模型呢?

方法一(推荐):

第一种方法也是官方推荐的方法,只保存和恢复模型中的参数。

保存

torch.save(the_model.state_dict(), PATH)

恢复

the_model = TheModelClass(*args, **kwargs)
the_model.load_state_dict(torch.load(PATH))

使用这种方法,我们需要自己导入模型的结构信息。

方法二:

使用这种方法,将会保存模型的参数和结构信息。

保存

torch.save(the_model, PATH)

恢复

  1. the_model = torch.load(PATH)

一个相对完整的例子

saving

torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, 'checkpoint.tar' )

loading

if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch']))
 

获取模型中某些层的参数

对于恢复的模型,如果我们想查看某些层的参数,可以:

# 定义一个网络
from collections import OrderedDict
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
# 打印网络的结构
print(model)
 
OUT:
Sequential (
(conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
(relu1): ReLU ()
(conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
(relu2): ReLU ()
)
 
如果我们想获取conv1的weight和bias:
 
params=model.state_dict()
for k,v in params.items():
print(k) #打印网络中的变量名
print(params['conv1.weight']) #打印conv1的weight
print(params['conv1.bias']) #打印conv1的bias
 
  1.  

pytorch加载和保存模型的更多相关文章

  1. Tensorflow模型加载与保存、Tensorboard简单使用

    先上代码: from __future__ import absolute_import from __future__ import division from __future__ import ...

  2. PyTorch模型加载与保存的最佳实践

    一般来说PyTorch有两种保存和读取模型参数的方法.但这篇文章我记录了一种最佳实践,可以在加载模型时避免掉一些问题. 第一种方案是保存整个模型: 1 torch.save(model_object, ...

  3. TensorFlow模型加载与保存

    我们经常遇到训练时间很长,使用起来就是Weight和Bias.那么如何将训练和测试分开操作呢? TF给出了模型的加载与保存操作,看了网上都是很简单的使用了一下,这里给出一个神经网络的小程序去测试. 本 ...

  4. KnockoutJS 3.X API 第七章 其他技术(1) 加载和保存JSON数据

    Knockout允许您实现复杂的客户端交互性,但几乎所有Web应用程序还需要与服务器交换数据,或至少将本地存储的数据序列化. 最方便的交换或存储数据的方式是JSON格式 - 大多数Ajax应用程序今天 ...

  5. Qt Load and Save PCL/PLY 加载和保存点云

    Qt可以跟VTK和PCL等其他库联合使用,十分强大,下面的代码展示了如何使用Qt联合PCL库来加载和保存PCL/PLY格式的点云: 通过按钮加载点云: void QMainWindow::on_pb_ ...

  6. 6.Knockout.Js(加载或保存JSON数据)

    前言 Knockout可以实现很复杂的客户端交互,但是几乎所有的web应用程序都要和服务器端交换数据(至少为了本地存储需要序列化数据),交换数据最方便的就是使用JSON格式 – 大多数的Ajax应用程 ...

  7. Knockout应用开发指南 第六章:加载或保存JSON数据

    原文:Knockout应用开发指南 第六章:加载或保存JSON数据 加载或保存JSON数据 Knockout可以实现很复杂的客户端交互,但是几乎所有的web应用程序都要和服务器端交换数据(至少为了本地 ...

  8. Knockout.Js官网学习(加载或保存JSON数据)

    前言 Knockout可以实现很复杂的客户端交互,但是几乎所有的web应用程序都要和服务器端交换数据(至少为了本地存储需要序列化数据),交换数据最方便的就是使用JSON格式 – 大多数的Ajax应用程 ...

  9. 第六章:加载或保存JSON数据

    加载或保存JSON数据 Knockout可以实现很复杂的客户端交互,但是几乎所有的web应用程序都要和服务器端交换数据(至少为了本地存储需要序列化数据),交换数据最方便的就是使用JSON格式 – 大多 ...

随机推荐

  1. 算法:最短路径之弗洛伊德(Floyd)算法

    https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是 ...

  2. 20165327 2017-2018-2 《Java程序设计》第9周学习总结

    20165327 2017-2018-2 <Java程序设计>第9周学习总结 教材内容总结 第十三章 (一)教材学习内容总结 理解 URL类是对统一资源定位符的抽象,使用URL创建对象的应 ...

  3. Lab 6-2

    Analyze the malware found in the file Lab06-02.exe. Questions and Short Answers What operation does ...

  4. Practical Node.js (2018版) 第4章: 模版引擎

    Template Engines: Pug and Handlebars 一个模版引擎是一个库或框架.它用一些rules/languages来解释data和渲染views. web app中,view ...

  5. 最新的vueWebpack项目

    最近优化了我的vueWebpack多入口框架,感觉清新了好多:http://pan.baidu.com/s/1bNYJp0

  6. Confluence 6 自定义空间布局

    你可以通过编辑布局文件来对 Confluence 的外观和表现进行编辑.这个页面将会告诉你如何来为空间自定义布局文件.你需要系统管理员的 全局权限(global permission) 和你希望进行修 ...

  7. scrapy 爬虫框架(一)

    一 . scrapy 的安装 安装scrapy框架时,需要先安装依赖包. #Linux: pip3 install scrapy #Windows: a. pip3 install wheel b. ...

  8. 小程序传id值

    xml文件 <view class='bgcf bsbb pl30 pr30 pt30 pb30 df fww' >       <block wx:for="{{intr ...

  9. python 查看文件名和文件路径

    查看文件名和文件路径 1 >>> import os 2 >>> url = 'https://images0.cnblogs.com/i/311516/20140 ...

  10. 剑指offer-栈的压入与弹出

    题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序 ...