一、 constant(常量)

  constant是TensorFlow的常量节点,通过constant方法创建,其是计算图(Computational Graph)中的起始节点,是传入数据。

创建方式

cons = tf.constant(value=[1,2],dtype=tf.float32,shape=(1,2),name='testconst', verify_shape=False)

参数说明

value:初始值,必填,必须是一个张量(1或[1,2,3]或[[1,2,3],[2,2,3]]或......)

dtype:数据类型,选填,默认为value的数据类型,传入参数为tensorflow下的枚举值(float32,float64.......)

shape:数据形状,选填,默认为value的shape,设置时不得比value小,可以比value阶数、维度更高,超过部分按value提供最后一个数字填充,示例代码如下

import tensorflow as tf

sess = tf.InteractiveSession()
cons1 = tf.constant([1, 2, 3], shape=[2, 3])
print(sess.run(cons1))
# [[1 2 3]
# [3 3 3]]

name:常量名,选填,默认值不重复,根据创建顺序为(Const,Const_1,Const_2.......)

verify_shape:是否验证value的shape和指定shape相符,若设为True则进行验证,不相符时会抛出异常

二、placeholder(占位符)

  placeholder是TensorFlow的占位符节点,由placeholder方法创建,其也是一种常量,但是由用户在调用run方法是传递的,也可以将placeholder理解为一种形参。即其不像constant那样直接可以使用,需要用户传递常数值。

创建方式

X = tf.placeholder(dtype=tf.float32, shape=[144, 10], name='X')

参数说明

dtype:数据类型,必填,默认为value的数据类型,传入参数为tensorflow下的枚举值(float32,float64.......)

shape:数据形状,选填,不填则随传入数据的形状自行变动,可以在多次调用中传入不同形状的数据

name:常量名,选填,默认值不重复,根据创建顺序为(Placeholder,Placeholder_1,Placeholder_2.......)

示例代码

import tensorflow as tf
import numpy.random as random #占位符shape不设时会按传入参数自行匹配
node1 = tf.placeholder(tf.float32) # , shape=[4, 5])
node2 = tf.placeholder(tf.float32) # , shape=[4, 5])
op = tf.multiply(node1, node2)
session = tf.Session()
const1 = tf.constant(random.rand(4, 5))
const2 = tf.constant(random.rand(4, 5))
#可以传入初始化后的常量
print(session.run(op, {node1: session.run(const1), node2: session.run(const2)}))
#也可以直接传入张量,其实同初始化后的常量一致
print(session.run(op, {node1: random.rand(2, 3), node2: random.rand(2, 3)}))

三、Variable(变量)

  Vatiable是tensorflow的变量节点,通过Variable(注:V大写)方法创建,并且需要传递初始值。在使用前需要通过tensorflow的初始化方法进行初始化。

创建方式

W = tf.Variable(initial_value=tf.zeros([9, 5]),  # 初始值,必填,张量或可以转换为张量的Python对象。初始值必须有指定一个形状,除非`validate_shape`设置为False。
trainable=True, # 如果`True`,则默认值也将变量添加到图形中集合`GraphKeys.TRAINABLE_VARIABLES`。这个集合用作“Optimizer”类使用的默认变量列表
collections=None, # 图表集合键的列表。新的变量被添加到这些集合。默认为`[GraphKeys.GLOBAL_VARIABLES]`。
validate_shape=True, # 如果`False`,允许变量用初始化未知形状的值。如果“True”,默认的形状`initial_value`必须是已知的。
caching_device=None, # 可选设备字符串,描述变量的位置应该被缓存以供阅读。默认为变量的设备。如果不是“None”,则缓存在另一个设备上。典型的用途是缓存在使用变量的Ops所在的设备上进行重复数据删除复制`Switch`和其他条件语句。
name='W', # 变量的可选名称。默认为“Variable”并获取自动去重(Variable_1,Variable_2....)。
variable_def=None, # `VariableDef`协议缓冲区。如果不是“无”,则重新创建变量对象及其内容,引用变量的节点在图中,必须已经存在。图形没有改变。`variable_def`和其他参数是互斥的。
dtype=tf.float32, # 如果设置,initial_value将被转换为给定的类型。如果`None',数据类型将被保存(如果`initial_value`是一个张量),或者“convert_to_tensor”来决定。
expected_shape=None, # 张量的Shape。如果设置,initial_value需要符合这个形状。
import_scope=None) # 可选的字符串。名称范围添加到`Variable.`仅在从协议缓冲区初始化时使用。

参数说明Variable函数的全部参数如上方代码展示,不过目前我在学习中遇到常用的的参数只有如下几个,其他的参数暂时没在代码中遇到

initial_value,dtype,name,创建代码类似下面这样

    W = tf.Variable(tf.zeros([3, 10]), dtype=tf.float64, name='W')

原创声明

作者:Vulper

地址:http://www.cnblogs.com/Vulpers/p/7809276.html

本文版权归作者和博客园共同所有,欢迎转载,转载必须注明出处。

TensorFlow学习笔记——节点(constant、placeholder、Variable)的更多相关文章

  1. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  3. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  4. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  5. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  6. TensorFlow学习笔记1-入门

    TensorFlow学习笔记1-入门 作者: YunYuan *** 写在前面 本笔记是我学习TensorFlow官方文档中文版的读书笔记,由于尚未搭建好Github的个人博客的评论功能,故尚不方便与 ...

  7. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  8. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  9. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. Python中read()、readline()和readlines()三者间的区别和用法

    2019-01-15 10:48:43 前言 众所周知在python中读取文件常用的三种方法:read(),readline(),readlines(),今天看项目是又忘记他们的区别了.以前看书的时候 ...

  2. Eclipse无法使用springboot2.x

    <!-- 阿里云提供的镜像地址 --> <mirror> <id>nexus-aliyun</id> <mirrorOf>*</mir ...

  3. 一、win+git安装

    最近公司版本控制准备弃用svn,采用git.所以在个人系统安装玩了下,留点爪印... 1.下载最新的 git 包(根据电脑系统) 官网地址:https://git-scm.com/download/w ...

  4. javascript获取id元素

    function $(id){ return document.getElementById(id); }导致所有的js不能用解决办法....   function $(id){ return doc ...

  5. java---->Itellij idea报错:错误: 找不到或无法加载主类 main

      没有设置好正确的类路径 点击上面圈红色处,在点击Edit Configuration,进入下面设置界面 切换到下面这个界面 红色×消失,运行正常,截图如下

  6. Python入门学习指南--内附学习框架

    https://blog.csdn.net/weixin_44558127/article/details/86527360

  7. 大数据量 与 UI交互时的处理 总结与心得

    [以下均在主线程中操作时]1.UI直接操作,数据量较大时,直接使用UI会非常慢2.数据驱动操作,数据量较大时,数据与UI的交互效率相比“1”提升明显 总结:但以上这两种操作  都会“较长时间”占用主线 ...

  8. English trip EM2-PE-6A Family Relationship Teacher:Taylor

    课上内容(Lesson) What's your name? Where is your hometown?  你的家乡是哪里? Where do you come from?    你从哪里来?  ...

  9. LeetCode--012--整数转罗马数字(java)

    罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并 ...

  10. 20171205xlVBA往返航班组合

    'ClassPlan Public Org As String Public Des As String Public FlyNo As String Public StartDate As Vari ...