Beta分布深入理解
一些公式
Gamma函数
(1)
贝叶斯公式
(2)
贝叶斯公式计算二项分布概率
现在有一枚未知硬币,我们想要计算抛出后出现正面的概率。我们使用贝叶斯公式计算硬币出现正面的概率。硬币出现正反率的概率和硬币两面的质量有较大关系,由于硬币未知,我们不知道是否会有人做手脚,于是在实验之前我们认为硬币出现正面的概率服从均匀分布
,即
(3)
抛硬币是一个二项试验,所以n次实验中出现x次正面的似然概率为
(4)
把(3)(4)式带入(2)式中,得到
考虑到Gamma函数,进一步推算有
(5)
这个分布就是大名鼎鼎的Beta分布。我们记Beta函数为
记Beta分布为
实际上,抛硬币的例子中,x为正整数,所以抛n次硬币,出现x次正面的后验概率分布为
(6)
可以看到,当a、b为整数时,Beta(a, b)与二项分布Bin(n, p)的表达式有点神似。正是因为这点神似,才让Beta分布与二项分布成为共轭分布。共轭分布我们在后续会详细讲。
Beta分布特性
我们先看看Beta分布有什么特性。
1、 Beta(1, 1)等于均匀分布。
2、 作为概率的概率分布,Beta(a, b)在(0, 1)上对θ积分必定为1。
3、 Beta(a, b)同时能作为先验分布和后验分布,必定能够模拟各种概率分布情况。
如上图,Beta分布可以模拟出以(0, 1)上任意点为峰值的曲线,这表明Beta分布可以模拟极大似然法求出的任意最大值点概率值。
Beta分布的统计例子
问题:随机变量,把这n个随机变量排序后得到顺序统计量
,然后请问
的分布是什么。
为解决这个问题,可以尝试计算落在区间[x, x+Δx]的概率。即求下述式子的值:
首先,把 [0,1] 区间分成三段 [0, x),[x, x+Δx],(x+Δx, 1],然后考虑下简单的情形:即假设n 个数中只有1个落在了区间 [x, x+Δx]内,由于这个区间内的数X(k)是第k大的,所以[0, x)中应该有 k - 1 个数,(x+Δx, 1] 这个区间中应该有n - k 个数。如下图所示:
从而问题转换为下述事件E:
对于上述事件E,有:
其中,o(Δx)表示Δx的高阶无穷小。显然,由于不同的排列组合,即n个数中有一个落在 [x, x+Δx]区间的有n种取法,余下n - 1个数中有k - 1个落在[0, x)的有种组合,所以和事件E等价的事件一共有
个。
如果有2个数落在区间[x, x+Δx]呢?如下图所示:
类似于事件E,对于2个数落在区间[x, x+Δx]的事件E':
有:
从上述的事件E、事件E'中,可以看出,只要落在[x, x+Δx]内的数字超过一个,则对应的事件的概率就是 o(Δx)。于是乎有:
从而得到的概率密度函数为:
对比公式(6),可以看到上式正是a、b为整数状态下的Beta分布。
对于,我们很容易计算
共轭分布
在贝叶斯概率理论中,如果后验概率P(θ|x)和先验概率p(θ)满足同样的分布律,那么,先验分布和后验分布被叫做共轭分布,同时,先验分布叫做似然函数的共轭先验分布。
文章开头的演算中,我们已经知道使用Beta(1, 1)作为先验分布,结合贝叶斯公式和二项分布似然函数,计算出的后验分布也为Beta分布。
实际上,结合公式(2)(4)(5),我们很容易得到
Beta(a, b) + 实验数据(事件A m次,非事件A n次) ~ Beta(a + m, b + n)
参考:
https://blog.csdn.net/ccnt_2012/article/details/81113923
http://www.360doc.com/content/16/0428/10/478627_554452907.shtml#
https://www.zhihu.com/question/21134457
Beta分布深入理解的更多相关文章
- Beta分布从入门到精通
近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Defini ...
- 如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...
- 二项分布和Beta分布
原文为: 二项分布和Beta分布 二项分布和Beta分布 In [15]: %pylab inline import pylab as pl import numpy as np from scipy ...
- 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...
- Dirichlet分布深入理解
Dirichlet分布 我们把Beta分布推广到高维的场景,就是Dirichlet分布.Dirichlet分布定义如下 Dirichlet分布与多项式分布共轭.多项式分布定义如下 共轭关系表示如下 D ...
- 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...
- 指数家族-Beta分布
2. Beta分布 2.1 Beta分布 我们将由几个问题来得引出几个分布: 问题一:1: 2:把这个 个随机变量排序后得到顺序统计量 3:问 是什么分布 首先我们尝试计算 落在一个区间 ...
- Beta分布和Dirichlet分布
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...
- 二项分布 多项分布 伽马函数 Beta分布
http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: ...
随机推荐
- 关于 Data URI Scheme -- data:image/jpg;base64
转载一篇大神的文章 大家可能注意到了,网页上有些图片的src或css背景图片的url后面跟了一大串字符,比如:  ...
- Email实例
import java.util.Properties; import javax.activation.DataHandler; import javax.activation.DataSource ...
- 对vue生命周期的理解
总共分为8个阶段,创建前/后,载入前/后,更新前/后,销毁前/后: 创建前/后:在beforeCreated阶段,vue实例的挂载元素$el和数据对象data都为undefined,还未初始化.在cr ...
- Ubuntu上Xilinx ARM交叉编译器安装
1,Windows中下载交叉编译器 2,在ubuntu中创建zedboard目录,并将交叉编译器复制进来 3,将该交叉编译器设置成可执行程序 chmod a+x xilinx-2011.09-50 ...
- synchronized同一把锁锁不同代码
对于多线程,如果是计算密集型,多线程不一定优势:但如果是io密集型(因为速度慢),多线程多数情况下就有很大的优势了(但也不全是,因为当io已经满负荷运转下,即100%了,再增加线程,未必就会增加效率) ...
- v-show 和 v-if 对 v-chart的影响
借鉴:https://blog.csdn.net/xiaxiangyun/article/details/78909991 使用v-show控制tab切换 其中一个tab数据请求后显示第二个tab,第 ...
- 重识TP5中模型
创建一个表MODEL,下面展现代码片段: `id` int unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID', `name` ) NOT NULL DEFAU ...
- 解决PHP5.6版本“No input file specified”的问题
问题描述:使用TP框架做项目时,在启用REWRITE的伪静态功能的时候,首页可以访问,但是访问其它页面的时候,就提示:“No input file specified.”原因在于使用的PHP5.6是f ...
- Centos7 zookeeper单机/集群安装详解和开机自启
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提供的功 ...
- [py]__name__ 属于哪个文件
name: 属于哪个文件 文件的 main 类的 class Person(object): """ 定义一个类 """ count = 1 ...