Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.15,伤害为5。 
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.315,伤害为3。 
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能; 
概率为 0.035,伤害为2。 
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.075,伤害为5。 
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.0675,伤害为4。 
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能; 
概率为 0.0075,伤害为3。 
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.1575,伤害为3。 
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.04725,伤害为4。 
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能; 
概率为 0.11025,伤害为1。 
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.0175,伤害为2。 
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.00525,伤害为3。 
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.011025,伤害为1。 
13.  第一轮不发动技能;第二轮亦不发动技能; 
概率为 0.001225,伤害为0。 
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。 
 
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。 

  题目大意 有n张卡牌,进行r轮游戏,每一轮,从第1张卡牌开始考虑,第i张牌如果没有发动过,则有p[i]的概率对分数有d[i]的贡献,发动后立刻结束这轮游戏。问期望的分数。

  有注意到每张卡牌发动的概率之和它之前的牌有关。

  考虑用f[i][j]表示当第i张牌得到j次发动机会的概率。

  根据dp的某些神奇的性质,只需要考虑第i张卡牌和第(i - 1)张卡牌就可以了(因为这样做的话,f[i - 1]包含了第(i - 2)张卡牌的相关信息,大概感觉有点像递归定义。。)

  1.第(i - 1)张卡牌在j次机会中1次都没有发动

    显然它的概率为

  2.第(i - 1)张卡牌在(j + 1)次机会中发动了1次

    可以求对立事件的概率,然后拿1去减它,于是得到了它的概率为

    不能理解?那我们换个方法,考虑在第i次机会发动,然后求和:

    然后用等比数列求和公式:

    化简得到:

  于是转移转移就好了。

Code

 /**
* bzoj
* Problem#4008
* Accepted
* Time: 848ms
* Memory: 1764k
*/
#include <bits/stdc++.h>
using namespace std; const int N = , R = ; int T;
int n, r;
int W[N];
double P[N];
double prP[N][R];
double f[N][R]; inline void prepare() {
for(int i = ; i < N; i++)
prP[i][] = ;
for(int i = ; i < R; i++)
prP[][i] = ;
} inline void init() {
scanf("%d%d", &n, &r);
for(int i = ; i <= n; i++)
scanf("%lf%d", P + i, W + i);
for(int i = ; i <= n; i++)
for(int j = ; j <= r; j++)
prP[i][j] = prP[i][j - ] * ( - P[i]);//, cerr << prP[i][j] << endl;
} inline void solve() {
memset(f, , sizeof(f));
f[][r] = ;
double ans = 0.0;
for(int i = ; i <= n; i++)
for(int j = ; j <= r; j++) {
f[i][j] = f[i - ][j] * prP[i - ][j] + f[i - ][j + ] * ( - prP[i - ][j + ]);
ans += f[i][j] * ( - prP[i][j]) * W[i];
}
printf("%.10lf\n", ans);
} int main() {
prepare();
scanf("%d", &T);
while(T--) {
init();
solve();
}
return ;
}

bzoj 4008 亚瑟王 - 动态规划 - 概率与期望的更多相关文章

  1. BZOJ 4008 亚瑟王

    Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...

  2. bzoj 4008 亚瑟王 期望概率dp

    对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁. 一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏 ...

  3. BZOJ 4008 亚瑟王(概率DP 奥妙重重)

    题意 中文题面,就不解释了 分析 显然这道题直接求期望太麻烦,想想转化问题(这转化太神了). 定义f(i,j)f(i,j)f(i,j)表示第iii张卡总共被经过jjj次的概率,有转移方程式 f(i,j ...

  4. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  5. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  6. BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]

    传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...

  7. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  8. bzoj 1419 Red is good - 动态规划 - 概率与期望

    Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一 ...

  9. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

随机推荐

  1. spring注解式开发之视图解析器

    http://localhost:8089/springmvc-04-viewResovler/springmvc/hello

  2. Unity shader学习之屏幕后期处理效果之均值模糊

    均值模糊,也使用卷积来实现,之不过卷积中每个值均相等,且相加等于1. 代码如下, 子类: using UnityEngine; public class MeanBlurRenderer : Post ...

  3. ReentrantLock源码(二)

    一.ReentrantLock类中的方法解读. 1.lock方法.实现了接口Lock中的lock方法.这里实际上是调用了sync成员变量的lock方法来实现.所以取决于sync的实现. 2.unloc ...

  4. 15. 3Sum(字典)

    Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find ...

  5. EasyUI表格DataGrid前端分页和后端分页的总结

    Demo简介 Demo使用Java.Servlet为后台代码(数据库已添加数据),前端使用EasyUI框架,后台直接返回JSON数据给页面 1.配置Web.xml文件 <?xml version ...

  6. mybatis oracle -批量插入,存在则更新

    <insert id="batchUpdatePBWUserInfo" parameterType="java.util.List"> MERGE ...

  7. 大数据处理框架之Strom:认识storm

    Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...

  8. Visual Assist 10.9.2248 破解版(支持VS2017)

    [1]下载安装包 下载地址:https://download.csdn.net/download/qq_20044811/10597708 [2]安装与破解方法 第一步:关闭VS所有打开窗体 第二步: ...

  9. caffe生成voc格式lmdb

    要训练ssd基本都是在liu wei框架下改,生成lmdb这一关照葫芦画瓢总遇坑,记录之: 1. labelmap_voc.prototxt要根据自己的分类修改,比如人脸检测改成这样: item { ...

  10. 使用commons-compress解压GBK格式winzip文件到UTF8,以及错误使用ZipArchiveInputStream读出来数据全是空的解决办法

    先上正确方法: 正确方式应该为,先创建一个ZipFile,然后对其entries做遍历,每一个entry其实就是一个文件或者文件夹,检测到文件夹的时候创建文件夹,其他情况创建文件,其中使用zipFil ...