There are nnn rectangles on the plane. The problem is to find the area of the union of these rectangles. Note that these rectangles might overlap with each other, and the overlapped areas of these rectangles shall not be counted more than once. For example, given a rectangle AAA with the bottom left corner located at (0,0)(0, 0)(0,0) and the top right corner at (2,2)(2, 2)(2,2), and the other rectangle BBB with the bottom left corner located at (1,1)(1,1)(1,1) and the top right corner at (3,3)(3,3)(3,3), it follows that the area of the union of AAA and BBB should be 777, instead of 888.

Although the problem looks simple at the first glance, it might take a while to figure out how to do it correctly. Note that the shape of the union can be very complicated, and the intersected areas can be overlapped by more than two rectangles.

Note:

(1) The coordinates of these rectangles are given in integers. So you do not have to worry about the floating point round-off errors. However, these integers can be as large as 1,000,0001,000,0001,000,000.

(2) To make the problem easier, you do not have to worry about the sum of the areas exceeding the long integer precision. That is, you can assume that the total area does not result in integer overflow.

Input Format

Several sets of rectangles configurations. The inputs are a list of integers. Within each set, the first integer (in a single line) represents the number of rectangles, n, which can be as large as 100010001000. After n, there will be n lines representing the n rectangles; each line contains four integers <a,b,c,d><a, b, c, d><a,b,c,d> , which means that the bottom left corner of the rectangle is located at (a,b)(a, b)(a,b), and the top right corner of the rectangle is located at (c,d)(c, d)(c,d). Note that integers aaa, bbb, ccc, ddd can be as large as 1,000,0001,000,0001,000,000.

These configurations of rectangles occur repetitively in the input as the pattern described above. An integer n=0n = 0n=0 (zero) signifies the end of input.

Output Format

For each set of the rectangles configurations appeared in the input, calculate the total area of the union of the rectangles. Again, these rectangles might overlap each other, and the intersecting areas of these rectangles can only be counted once. Output a single star '*' to signify the end of outputs.

样例输入

2
0 0 2 2
1 1 3 3
3
0 0 1 1
2 2 3 3
4 4 5 5
0

样例输出

7
3
* 直接套模板
参考博客:POJ 1151 Atlantis(重叠矩阵面积和=离散化)
 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
struct Node//矩形
{
double x1,y1,x2,y2;
}nodes[maxn];
double x[maxn],y[maxn];
bool mp[maxn][maxn]; int find(double *x,double val,int n)//在数组x中找到val值的位置
{
int L=,R=n-;
while(R>=L)
{
int mid=L+(R-L)/;
if(x[mid]==val) return mid;
else if(x[mid]>val) R=mid-;
else L=mid+;
}
return -;
} int main()
{
int n,num1,num2;
while(~scanf("%d",&n))
{
if(n==){printf("*\n");break;}
num1=num2=;//num1记录有多少个不同x值,num2记录y的
memset(mp,,sizeof(mp));
for(int i=;i<n;++i)
{
scanf("%lf%lf%lf%lf",&nodes[i].x1,&nodes[i].y1,&nodes[i].x2,&nodes[i].y2);
x[num1++]=nodes[i].x1;
x[num1++]=nodes[i].x2;
y[num2++]=nodes[i].y1;
y[num2++]=nodes[i].y2;
}
sort(x,x+num1);
sort(y,y+num2);
num1=unique(x,x+num1)-x;//去重
num2=unique(y,y+num2)-y;//去重 for(int i=;i<n;++i)
{
//找出第i个原始大矩形覆盖的小矩形范围
int L_x=find(x,nodes[i].x1,num1);
int R_x=find(x,nodes[i].x2,num1);
int L_y=find(y,nodes[i].y1,num2);
int R_y=find(y,nodes[i].y2,num2); for(int j=L_x;j<R_x;++j)
for(int k=L_y;k<R_y;++k)
mp[j][k]=true;
}
long long int ans=;
for(int i=;i<num1;++i)
for(int j=;j<num2;++j)if(mp[i][j])
ans += (x[i+]-x[i])*(y[j+]-y[j]);
printf("%lld\n",ans);
}
return ;
}

2017ICPC南宁赛区网络赛 Overlapping Rectangles(重叠矩阵面积和=离散化模板)的更多相关文章

  1. 2017 ACM/ICPC 南宁区 网络赛 Overlapping Rectangles

    2017-09-24 20:11:21 writer:pprp 找到的大神的代码,直接过了 采用了扫描线+线段树的算法,先码了,作为模板也不错啊 题目链接:https://nanti.jisuanke ...

  2. 2017ICPC南宁赛区网络赛 Minimum Distance in a Star Graph (bfs)

    In this problem, we will define a graph called star graph, and the question is to find the minimum d ...

  3. 2017ICPC南宁赛区网络赛 The Heaviest Non-decreasing Subsequence Problem (最长不下降子序列)

    Let SSS be a sequence of integers s1s_{1}s​1​​, s2s_{2}s​2​​, ........., sns_{n}s​n​​ Each integer i ...

  4. 2017ICPC南宁赛区网络赛 Train Seats Reservation (简单思维)

    You are given a list of train stations, say from the station 111 to the station 100100100. The passe ...

  5. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  6. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 Overlapping Rectangles

    There are nn rectangles on the plane. The problem is to find the area of the union of these rectangl ...

  7. 2017ICPC北京赛区网络赛 Minimum(数学+线段树)

    描述 You are given a list of integers a0, a1, …, a2^k-1. You need to support two types of queries: 1. ...

  8. 2017ICPC北京赛区网络赛 Visiting Peking University(简单思维)

    描述 Ming is going to travel for n days and the date of these days can be represented by n integers: 0 ...

  9. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

随机推荐

  1. 导出csv文件数字会自动变科学计数法的解决方法

    其实这个问题跟用什么语言导出csv文件没有关系.Excel显示数字时,如果数字大于12位,它会自动转化为科学计数法:如果数字大于15位,它不仅用于科学技术费表示,还会只保留高15位,其他位都变0.解决 ...

  2. CF-339D-线段树

    http://codeforces.com/problemset/problem/339/D 给出一个序列.每次更改其中一个值然后询问序列的f(),序列的f()定义为: 每相邻两个元素按位或得到长度减 ...

  3. js javascript 容错处理代码屏蔽js错误

    加入到head <SCRIPT language=javascript> window.onerror=function(){return true;} </SCRIPT> o ...

  4. phpStorm中Structure窗口中的符号代表的意思

    参考:https://www.jetbrains.com/help/phpstorm/2016.3/symbols.html Icon   Description Class 类 Final clas ...

  5. AWS EC2 MySQL迁移到RDS案例

    Amazon Relational Database Service (Amazon RDS) 是一种Web 服务,可让用户更轻松地在云中设置.操作和扩展关系数据库.它可以为行业标准关系数据库提供经济 ...

  6. 牛客第二场Dmoney

    链接:https://www.nowcoder.com/acm/contest/140/D 来源:牛客网 题目描述 White Cloud has built n stores numbered to ...

  7. Humble Numbers HDU - 1058

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  8. Linux网卡性能查看(CentOS)

    一.ethtool查看网卡带宽 ethtool eth0 #eth0为网卡名,使用ifconfig查看当前使用的网卡 Speed表示网卡带宽,Duplex表示工作模式,Supported link m ...

  9. Spring AOP+Log4j记录项目日志

    转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/6567672.html 项目日志记录是项目开发.运营必不可少的内容,有了它可以对系统有整体的把控,出现任何问题 ...

  10. shiro学习笔记-Subject#login(token)源码实现过程

    追踪Subject的login(AuthenticationToken token)方法,其调用的为DelegatingSubject类的login方法,DelegatingSubject实现了Sub ...