There are nnn rectangles on the plane. The problem is to find the area of the union of these rectangles. Note that these rectangles might overlap with each other, and the overlapped areas of these rectangles shall not be counted more than once. For example, given a rectangle AAA with the bottom left corner located at (0,0)(0, 0)(0,0) and the top right corner at (2,2)(2, 2)(2,2), and the other rectangle BBB with the bottom left corner located at (1,1)(1,1)(1,1) and the top right corner at (3,3)(3,3)(3,3), it follows that the area of the union of AAA and BBB should be 777, instead of 888.

Although the problem looks simple at the first glance, it might take a while to figure out how to do it correctly. Note that the shape of the union can be very complicated, and the intersected areas can be overlapped by more than two rectangles.

Note:

(1) The coordinates of these rectangles are given in integers. So you do not have to worry about the floating point round-off errors. However, these integers can be as large as 1,000,0001,000,0001,000,000.

(2) To make the problem easier, you do not have to worry about the sum of the areas exceeding the long integer precision. That is, you can assume that the total area does not result in integer overflow.

Input Format

Several sets of rectangles configurations. The inputs are a list of integers. Within each set, the first integer (in a single line) represents the number of rectangles, n, which can be as large as 100010001000. After n, there will be n lines representing the n rectangles; each line contains four integers <a,b,c,d><a, b, c, d><a,b,c,d> , which means that the bottom left corner of the rectangle is located at (a,b)(a, b)(a,b), and the top right corner of the rectangle is located at (c,d)(c, d)(c,d). Note that integers aaa, bbb, ccc, ddd can be as large as 1,000,0001,000,0001,000,000.

These configurations of rectangles occur repetitively in the input as the pattern described above. An integer n=0n = 0n=0 (zero) signifies the end of input.

Output Format

For each set of the rectangles configurations appeared in the input, calculate the total area of the union of the rectangles. Again, these rectangles might overlap each other, and the intersecting areas of these rectangles can only be counted once. Output a single star '*' to signify the end of outputs.

样例输入

2
0 0 2 2
1 1 3 3
3
0 0 1 1
2 2 3 3
4 4 5 5
0

样例输出

7
3
* 直接套模板
参考博客:POJ 1151 Atlantis(重叠矩阵面积和=离散化)
 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
struct Node//矩形
{
double x1,y1,x2,y2;
}nodes[maxn];
double x[maxn],y[maxn];
bool mp[maxn][maxn]; int find(double *x,double val,int n)//在数组x中找到val值的位置
{
int L=,R=n-;
while(R>=L)
{
int mid=L+(R-L)/;
if(x[mid]==val) return mid;
else if(x[mid]>val) R=mid-;
else L=mid+;
}
return -;
} int main()
{
int n,num1,num2;
while(~scanf("%d",&n))
{
if(n==){printf("*\n");break;}
num1=num2=;//num1记录有多少个不同x值,num2记录y的
memset(mp,,sizeof(mp));
for(int i=;i<n;++i)
{
scanf("%lf%lf%lf%lf",&nodes[i].x1,&nodes[i].y1,&nodes[i].x2,&nodes[i].y2);
x[num1++]=nodes[i].x1;
x[num1++]=nodes[i].x2;
y[num2++]=nodes[i].y1;
y[num2++]=nodes[i].y2;
}
sort(x,x+num1);
sort(y,y+num2);
num1=unique(x,x+num1)-x;//去重
num2=unique(y,y+num2)-y;//去重 for(int i=;i<n;++i)
{
//找出第i个原始大矩形覆盖的小矩形范围
int L_x=find(x,nodes[i].x1,num1);
int R_x=find(x,nodes[i].x2,num1);
int L_y=find(y,nodes[i].y1,num2);
int R_y=find(y,nodes[i].y2,num2); for(int j=L_x;j<R_x;++j)
for(int k=L_y;k<R_y;++k)
mp[j][k]=true;
}
long long int ans=;
for(int i=;i<num1;++i)
for(int j=;j<num2;++j)if(mp[i][j])
ans += (x[i+]-x[i])*(y[j+]-y[j]);
printf("%lld\n",ans);
}
return ;
}

2017ICPC南宁赛区网络赛 Overlapping Rectangles(重叠矩阵面积和=离散化模板)的更多相关文章

  1. 2017 ACM/ICPC 南宁区 网络赛 Overlapping Rectangles

    2017-09-24 20:11:21 writer:pprp 找到的大神的代码,直接过了 采用了扫描线+线段树的算法,先码了,作为模板也不错啊 题目链接:https://nanti.jisuanke ...

  2. 2017ICPC南宁赛区网络赛 Minimum Distance in a Star Graph (bfs)

    In this problem, we will define a graph called star graph, and the question is to find the minimum d ...

  3. 2017ICPC南宁赛区网络赛 The Heaviest Non-decreasing Subsequence Problem (最长不下降子序列)

    Let SSS be a sequence of integers s1s_{1}s​1​​, s2s_{2}s​2​​, ........., sns_{n}s​n​​ Each integer i ...

  4. 2017ICPC南宁赛区网络赛 Train Seats Reservation (简单思维)

    You are given a list of train stations, say from the station 111 to the station 100100100. The passe ...

  5. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  6. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 Overlapping Rectangles

    There are nn rectangles on the plane. The problem is to find the area of the union of these rectangl ...

  7. 2017ICPC北京赛区网络赛 Minimum(数学+线段树)

    描述 You are given a list of integers a0, a1, …, a2^k-1. You need to support two types of queries: 1. ...

  8. 2017ICPC北京赛区网络赛 Visiting Peking University(简单思维)

    描述 Ming is going to travel for n days and the date of these days can be represented by n integers: 0 ...

  9. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

随机推荐

  1. 使用org.apache.poi导出Excel表格

    public HSSFWorkbook MakeExcel(List<TransactionLogVO> logList) { // SimpleDateFormat sdf = new ...

  2. python-day71--django多表双下划线查询及分组聚合及F/Q查询

    #====================================双下划线的跨表查询===============# 前提 此时 related_name=bookList 属性查询: # 查 ...

  3. linux服务器磁盘扩容的方法

    1.系统环境如下图: 2.为该系统添加一块新的虚拟硬盘,添加后需重启虚拟机,否则系统不识别:如下图,/dev/sdc 是新添加的硬盘: 3.fdisk /dev/sdc为新硬盘创建分区: 4.Linu ...

  4. Liunx下安装jdk7

    一. 查询系统中是否有安装过jdk: #  rpm -qa | grep java 查询到有安装,使用命令卸载: #  rpm -e --nodeps java-1.6.0-openjdk-1.6.0 ...

  5. git rebase commit 信息处理

    pick:正常选中 reword:选中,并且修改提交信息: edit:选中,rebase时会暂停,允许你修改这个commit(参考这里) squash:选中,会将当前commit与上一个commit合 ...

  6. elasticsearch在CentOS环境下开机启动

    验证环境,OS版本:CentOS-7-x86_64-Minimal-1708:ES版本:elasticsearch-6.2.2. 1.创建文件elasticsearch #!/bin/bash # # ...

  7. Linux int 最大为多大

    可以查看 /usr/include/limits.h 文件 里面定义好了各种类型的最大最小值 ... /* Minimum and maximum values a `signed int' can ...

  8. windows 路由的配置

    查看ip路由表 route print : netstat -r windows 下添加一条路由 route命令 route [-f][-p][command [distinataion] [MASK ...

  9. linux系统监控与硬盘分区/格式化/文件系统管理

    1.系统监控 1) 系统监视和进程控制的工具----> Top 与  free      类似于windows的资源管理器.     进程运行的三种状态: tips: 进程(Process)是计 ...

  10. objectstate对象三种状态

    1.临时状态:new对象的过程,刚被创建出来,数据库中没有对应数据 2.持久状态:session.save(),数据库中有对应数据,session中也有对应数据 3游离状态:数据库中有对应数据,ses ...