[Algorithm] Asymptotic Growth Rate
f(n) 的形式 vs 判定形势
但,此题型过于简单,一般不出现在考题中。
Extended:
Let's set n = 2^m, so m = log(n)
T(n) = 2*T(n^(1/2)) + 1 =>
T(2^m) = 2*T(2^(m/2)) + 1 =>
S(M) = 2*S(M/2)) + 1
通过变量替换,变为了熟悉的、主定理能解决的 形式 => S(m) ~ O(m)
故,S(m) = T(log(n)) ~ O(log(n))
关键点:match 主定理(3)的条件。
a*f(n/b) <= c*f(n) ->
3*f(n/4) <= c*f(n) ->
3*(n/4)*log(n/4) <= c*n*log(n) ->
3/4 * n*log(n/4) <= c*n*log(n)
可见,有c<1时,是满足的。
答案就是O(nlogn)
When f(x) = x*sqrt(x+1)
这里的常数1是个tricky.
去掉它,x^(3/2)
变为x,sqrt(2)*[x^(3/2)]
可见,f(x)~Θ(x^(3/2))
T(n)=T(⌊n/2⌋)+T(⌊n/4⌋)+T(⌊n/8⌋)+n.
n+(7/8)*n+(7/8)^2 *n+(7/8)^3 *n+⋯ 等比数列!
so we have a geometric series and thus,
for our upper bound.
In a similar way, we could count just the contribution of the leftmost branches and conclude that T(n)≥2n.
Putting these together gives us the desired bound, T(n)=Θ(n)
Extended:
Recurrence Relation T(n)=T(n/8)+T(n/4)+lg(n)
太难:Solution.
(a) T(n) = T(n-1) + cn link
(b) T(n) = T(n-1) + log(n) link
(c) T(n) = T(n-1) + n^2 link
(d) T(n) = T(n-1) + 1/n link
(a) 递归展开,探寻规律:
T(n)=T(n−3)+(n−2)c+(n−1)c+nc
At the end we use T(2)=T(1)+2c=1+2cT(2)=T(1)+2c=1+2c. We conclude that
T(n)=1+(2+3+⋯+n)c.
可见是O(n^2)
(b) 递归展开,探寻规律:
T(n) = T(n - 1) + log n
= T(n - 2) + log (n - 1) + log n
= T(n - 3) + log (n - 2) + log (n - 1) + log n
= ...
= T(0) + log 1 + log 2 + ... + log (n - 1) + log n
= T(0) + log n!
According to Stirling's formula, 可见是O(n*log(n))
(c) 递归展开,探寻规律:
T(n)=T(0)+1^2+2^2+3^2+⋯+n^2
Or simply,
O(n^3)
(d) 这里是个调和级数
This is the nth harmonic number, Hn = 1 + 1/2 + 1/3 + ... + 1/n.
"所有调和级数都是发散于无穷的。但是其拉马努金和存在,且为欧拉常数。"
In fact, Hn = ln(n) + γ + O(1/n)
Hint:比较难,需换两次元。
[Algorithm] Asymptotic Growth Rate的更多相关文章
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- The Go Programming Language. Notes.
Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...
- Exercises for IN1900
Exercises for IN1900October 14, 2019PrefaceThis document contains a number of programming exercises ...
- Caching Best Practices--reference
reference:http://java.dzone.com/articles/caching-best-practices There is an irresistible attraction ...
- WPF依赖对象(DependencyObject) 实现源码,理解WPF原理必读
/// DependencyObject encompasses all property engine services. It's primary function /// is providin ...
- Background removal with deep learning
[原文链接] Background removal with deep learning This post describes our work and research on the gree ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- Ethereum White Paper
https://github.com/ethereum/wiki/wiki/White-Paper White Paper EditNew Page James Ray edited this pag ...
- CSUOJ 2031 Barareh on Fire
Description The Barareh village is on fire due to the attack of the virtual enemy. Several places ar ...
随机推荐
- 安装 jenkins
1. 将jenkins.war包放在 tomcat 的 webapps 目录下即可 2 重启 tomcat 3. 通过浏览器访问 IP:8080/jenkins
- spring cloud:Edgware.RELEASE版本中zuul回退方法的变化
Edgware.RELEASE以前的版本中,zuul网关中有一个ZuulFallbackProvider接口,代码如下: public interface ZuulFallbackProvider { ...
- C#中流的读写器BinaryReader、BinaryWriter,StreamReader、StreamWriter详解【转】
https://blog.csdn.net/ymnl_gsh/article/details/80723050 C#的FileStream类提供了最原始的字节级上的文件读写功能,但我们习惯于对字符串操 ...
- he canvas has been tainted by cross-origin data and tainted canvases may not be exported
来自: https://ourcodeworld.com/articles/read/182/the-canvas-has-been-tainted-by-cross-origin-data-and- ...
- IDA反汇编学习
1 转自:http://www.cnblogs.com/vento/archive/2013/02/09/2909579.html IDA Pro是一款强大的反汇编软件,特有的IDA视图和交叉引用,可 ...
- android makefile文件批量拷贝文件的方法
该方法是shell 和makefile组合使用 wallpapers := $(shell ls packages/apps/hyst_apps/NewBingoLauncher_C/default_ ...
- EasyUI tabs update 正确用法
来源:http://ewoyaofei.blog.163.com/blog/static/343562612012617111734974/ 一直以为 tabs update 是 easyui 的 b ...
- DropDMG for Mac(dmg 文件打包工具)破解版安装
1.软件简介 DropDMG 是 macOS 系统上的一款帮助用户快速打包 DMG 文件的 Mac 文件管理软件,DropDMG 不但可以将影像档加密.更可以配合 GZip .BZip2 .Ma ...
- rdlc报表在vs2008下编辑正常,在vs2012上编辑就报错
最近我们的系统的开发工具由vs2008升级到了2012,由于系统中很多报表都是用rdlc来开发的,今天 遇到有报表需要改动的需求,就直接使用vs2012对rdlc报表进行了编辑,结果改完后,怎么预览报 ...
- [Aaronyang] 写给自己的WPF4.5 笔记10[层次数据需求处理,TreeView绿色文章1/4]
我的文章一定要做到对读者负责,否则就是失败的文章 --------- www.ayjs.net aaronyang技术分享 AY留言: 文章根据难易,我根据游戏的规则进行了分色,希望读者 ...