大名鼎鼎的aiohttp,相信如果你学习Python或者爬虫的时候,肯定听说过这个东西。没听过也不要紧,今天看完文章,只要记住,aiohttp这个东西,在写爬虫的时候,很牛逼就行了。

aiohttp 就是一个用 asyncio实现的 HTTP client/server。 你可以通过它来简单实现一个具有异步处理功能的 clients 和 servers。 aiohttp同时还支持 Server WebSockets 和 Client WebSockets,让你使用起来更加简单。

今天,皮爷就带你来体验一下,这个“爬虫加速器”。

0x00 我们的爬虫需求

皮爷最近在做一个项目,就是用微信小程序追美剧的项目,那么首先,我们得需要有一个所有美剧的来源,恰巧,下面这个排行榜就有我们所有需要的信息:

http://www.ttmeiju.vip/index.php/summary/index/p/1.html

初级要求

我们很简单,就是需要从【第一页】:

http://www.ttmeiju.vip/index.php/summary/index/p/1.html

一直爬到最后一页【第三十五页】:

http://www.ttmeiju.vip/index.php/summary/index/p/35.html

中级要求

由于排行榜页面没有美剧的【季】信息,这个必须进入详情页来做,所以,中级要求就是针对每一条美剧,进入详情页,从里面爬取出来当前美剧的【季】信息。

这个要求不难吧?就是一级页面变换 page number 的数值来爬取信息。就算要爬取【季】信息,我们的爬虫深度也就才两级。

所以,这个需求不难。而且网页都是静态资源,一般简单的爬虫程序就能hou住。

0x01 撸码前的整理

这一步,我们需要想想通过什么样的方法能够实现上面的需求。

熟悉皮爷的童鞋都知道,皮爷之前的爬虫程序主要用 Scrapy 这个框架。为啥主要用这个?主要这个是一个框架。框架的意思就是写起来简单。何为简单?你只需要专注写爬虫的相关逻辑部分就好,不需要管理程序的生命周期,代码控制之类的问题,因为框架都给你整理好了。

那么,我们的需求就可以用两种做法来搞:

用 Scrapy 来写。自己写爬虫,但是要用到 aiohttp 的东西。下面皮爷就简单为大家来说一下他们是怎么实现的,以及最后对比结果。

0x02 Scrapy撸发撸起来

scrapy的写法,皮爷之前写过很多遍了,具体的教学文章,可以参考皮爷之前写的:

基于云服务的网站种子采集器,还能发送到邮箱,你不来考虑一下?

这里,我们就直接开始说具体的实现代码了。代码实现的就是从1页爬取到35页面,先不考虑“两层爬取”的数据。

class TtmjspiderSpider(scrapy.Spider):name = '皮爷spider' root_url = "http://www.ttmeiju.vip" def start_requests(self): start_url = "http://www.ttmeiju.vip/index.php/summary/index/p/1.html" yield Request(url=start_url, callback=self.parse_page, dont_filter=True, meta={"cur_page": 1, "max_page_num": -1}) def parse_page(self, response):content = response.body soup = BeautifulSoup(content, "html.parser")cur_page = response.meta["cur_page"] cur_url = response.urlmax_page_num = response.meta["max_page_num"] # 第一页找top3的标签rank_top_3_div = soup.find_all(name="div", attrs={"class": "ranktop3"}) for item in rank_top_3_div: link_a = item.find_all(name="a")[0] tv_url = self.root_url + link_a["href"] tv_name = link_a.text tv_rank_num = item.find_all(name="div", attrs={"class": "ranknum"})[0].text play_info_div = item.find_all(name="div", attrs={"class": "mjinfo"}) play_info_one = play_info_div[0].text play_info_two = play_info_div[1].text tv_category = play_info_one.split("/")[0].strip() tv_status = play_info_one.split("/")[1].strip()tv_update_day = play_info_one.split("/")[2].split(":")[-1].strip() temp_result = re.findall("\d{4}-\d{2}-\d{2}", play_info_two) if len(temp_result) != 0:tv_return_date = temp_result[0] else: tv_return_date = "暂无" # 构建 itemtv_item = TtmjTvPlayItem() tv_item["tv_play_name"] = tv_nametv_item["tv_play_rank"] = int(tv_rank_num) tv_item["tv_play_category"] = tv_category tv_item["tv_play_state"] = tv_statustv_item["tv_play_update_day"] = tv_update_daytv_item["tv_play_return_date"] = tv_return_date tv_item["tv_play_url"] = tv_url tv_item["tv_play_cur_season"] = 0 yield tv_item # 正常信息列表content_div = soup.find_all(name="tr", attrs={"class": re.compile(r"Scontent")}) for item in content_div: td_list = item.find_all(name="td") tv_rank_num = td_list[0].text link_a = td_list[1].find(name="a") tv_url = self.root_url + link_a["href"] tv_name = link_a.text tv_category = td_list[2].text.strip() tv_status = td_list[3].text.strip()tv_update_day = td_list[4].text.strip() tv_return_date = td_list[5].text.strip()tv_item = TtmjTvPlayItem() tv_item["tv_play_name"] = tv_nametv_item["tv_play_rank"] = int(tv_rank_num) tv_item["tv_play_category"] = tv_category tv_item["tv_play_state"] = tv_statustv_item["tv_play_update_day"] = tv_update_daytv_item["tv_play_return_date"] = tv_return_date tv_item["tv_play_url"] = tv_url tv_item["tv_play_cur_season"] = 0 yield tv_item next_page_ul = soup.find_all(name="ul", attrs={"class": "pagination"}) if len(next_page_ul) != 0: last_page_a = next_page_ul[0].find_all(name="a", attrs={"class": "end"}) if len(last_page_a) != 0 and max_page_num == -1: max_page_num = last_page_a[0].text if int(cur_page) < int(max_page_num):next_page_num = int(cur_page) + 1 else: logging.info("ALl finished") returnnext_page_url = cur_url[:-(len(cur_url.split("/")[-1]))] + str(next_page_num) + ".html" yield Request(url=next_page_url, callback=self.parse_page, dont_filter=True, meta={"cur_page": next_page_num, "max_page_num": max_page_num})

代码简单说一下,通过 【Chrome】--【检查】页面,看到我们要找的列表信息标签。

然后,通过 BeautifulSoup 来解析找到相对应的文字,并且解析成我们想要得到的 Scrapy Item ,最后在 pipeline 里面做存入数据库的操作。

那我们接下来就运行一下这个 Scrapy 框架写的爬取 35 页信息的爬虫,看看效果如何。

数据库里面看到已经存入了数据:

从结果里面看到,用 Scrapy ,没有修改 setting.py 文件,爬取 35 页数据,然后生成 Scrap.Item ,总共用了 2 分 10 秒。成绩还可以哈。

0x03 aiohttp撸法撸起来

这里,皮爷用网上的一张图来给大家看一下 aiohttp 的流程:

其实 aiohttp 就是讲事件进入一个队列,然后挨个调用执行,这些任务有个共同的特点,就是他们需要等待操作。所以,在等待的过程中,程序会调起其他任务接着执行。

我们来看代码:

sem = asyncio.Semaphore(80) # 信号量,控制协程数,防止爬的过快client = pymongo.MongoClient("mongodb://xx.xx.xx.xx/", xxx)db = client["xxx"]ttmj_collection = db["xxx"]result_dict = list()def generateRequestList(url, start, end):page_list = list() for i in range(start, end): genUrl = url.replace("**", str(i)) page_list.append(genUrl) return page_listasync def grab_page(url): with(await sem): async with aiohttp.ClientSession() as session: content = await fetch(session, url, 0)async def fetch(session, url, level, tv_item=None): async with session.get(url) as req: content = await req.text() soup = BeautifulSoup(content, "html.parser") root_url = "http://www.ttmeiju.vip"cur_time_string = datetime.datetime.now().strftime('%Y-%m-%d')rank_top_3_div = soup.find_all(name="div", attrs={"class": "ranktop3"}) for item in rank_top_3_div: link_a = item.find_all(name="a")[0] tv_url = root_url + link_a["href"] tv_name = link_a.text tv_rank_num = item.find_all(name="div", attrs={"class": "ranknum"})[0].text play_info_div = item.find_all(name="div", attrs={"class": "mjinfo"}) play_info_one = play_info_div[0].text play_info_two = play_info_div[1].text tv_category = play_info_one.split("/")[0].strip() tv_status = play_info_one.split("/")[1].strip()tv_update_day = play_info_one.split("/")[2].split(":")[-1].strip() temp_result = re.findall("\d{4}-\d{2}-\d{2}", play_info_two) if len(temp_result) != 0:tv_return_date = temp_result[0] else: tv_return_date = "暂无" tv_item = TtmjTvPlayItem() tv_item.tv_play_name = tv_name tv_item.tv_play_rank = int(tv_rank_num) tv_item.tv_play_category = tv_categorytv_item.tv_play_state = tv_status tv_item.tv_play_update_day = tv_update_day tv_item.tv_play_return_date = tv_return_datetv_item.tv_play_update_time = cur_time_string tv_item.tv_play_url = tv_urltv_item_dict = dict( (name, getattr(tv_item, name)) for name in dir(tv_item) if not name.startswith('__')) # print("complete Item: %s" % (tv_item.tv_play_name)) result_dict.append(tv_item_dict) # await fetch(session, tv_url, 1, tv_item) content_div = soup.find_all(name="tr", attrs={"class": re.compile(r"Scontent")}) for item in content_div: td_list = item.find_all(name="td") tv_rank_num = td_list[0].text link_a = td_list[1].find(name="a") tv_url = root_url + link_a["href"] tv_name = link_a.text tv_category = td_list[2].text.strip() tv_status = td_list[3].text.strip()tv_update_day = td_list[4].text.strip() tv_return_date = td_list[5].text.strip()tv_item = TtmjTvPlayItem() tv_item.tv_play_name = tv_nametv_item.tv_play_name_en = tv_url.split("/")[-1].replace(".", " ")[:-5]tv_item.tv_play_name_en_dot = tv_url.split("/")[-1][:-5]tv_item.tv_play_name_ch = tv_name.split(" ")[0] tv_item.tv_play_rank = int(tv_rank_num) tv_item.tv_play_category = tv_categorytv_item.tv_play_state = tv_status tv_item.tv_play_update_day = tv_update_day tv_item.tv_play_return_date = tv_return_datetv_item.tv_play_url = tv_url tv_item.tv_play_cur_season = 0 tv_item_dict = dict( (name, getattr(tv_item, name)) for name in dir(tv_item) if not name.startswith('__')) print("complete Item: %s" % (tv_item.tv_play_name))result_dict.append(tv_item_dict)def main_grab(page_list): loop = asyncio.get_event_loop() # 获取事件循环 tasks = [grab_page(url) for url in page_list] # 把所有任务放到一个列表中loop.run_until_complete(asyncio.wait(tasks)) # 激活协程 loop.close() # 关闭事件循环def writeToDb(): for tv_item in result_dict:ttmj_collection.insert(tv_item) print("insert item: " + tv_item["tv_play_name"]) client.close()if __name__ == '__main__': start_url = "http://www.ttmeiju.vip/index.php/summary/index/p/**.html" page_list = generateRequestList(start_url, 1, 36) start = time.time()main_grab(page_list) print('爬取总耗时:%.5f秒' % float(time.time() - start))writeToDb() print('总耗时:%.5f秒' % float(time.time() - start))

aiohttp的关键写法,就是在开头,得声明信号量,这里皮爷申请的是 80 个。

接着就是 main_grab 方法中,开始调用 aiohttp。 aiohttp的方法,都需要以

async def

开头来定义,其中,需要等待的地方,可以用

await

来写。皮爷的这个代码,你完全可以照猫画虎的写出自己的逻辑。如果还有什么不懂的,自己百度或者谷歌搜索 aiohttp 就可以,网上例子一大堆,都很简单,看了也没啥用。还不如实际的撸个项目,加深体验。

我们来看结果,爬取35个网页总共用了 2 秒多:

你没看错,单纯的爬取网页,就 2 秒。

数据库中是:

插入数据库,皮爷是一条一条插入的,所以这个耗时很严重,导致整个工程运行了 35 秒:

从之前的 130 秒,到现在的 35 秒,你说速度是不是快了很多???你说快不快?是不是比刘翔还快??接下来快看骚操作怎么搞。

0x04 骚操作福利

骚操作,就要骚起来。你看皮爷用 aiohttp 写的Python运行起来是不是很给力?不但爬取数据,还能将数据结果存储到服务器里面。你有没有想过,这个代码是不是可以放到服务器上面让服务器自己跑???

答案当然是:可以的!!!

没错,你以后写的 py 文件,均可以放到服务器上面自动执行。不再需要像现在这样,自己写了代码,在ide里面跑一边之后,就荒废了。

那么问题来了,首先,你是不是得有个服务器啊?皮爷不亏待你们,特意给你们准备了优惠券,有没有的都可以来领取。

阿里云部分: 【阿里云新人1888元云产品通用代金券】: https://promotion.aliyun.com/ntms/yunparter/invite.html?userCode=nrkmbo9q【阿里云爆款云主机,2折优惠券】:https://promotion.aliyun.com/ntms/act/qwbk.html?userCode=nrkmbo9q【阿里云企业级服务器2折优惠券】:https://promotion.aliyun.com/ntms/act/enterprise-discount.html?userCode=nrkmbo9q腾讯云:【新客户无门槛领取总价值高达2775元代金券,每种代金券限量500张,先到先得】:https://cloud.tencent.com/redirect.php?redirect=1025&cps_key=b351b2fc50b15866ff9d19b58a5df0f5&from=console【腾讯云服务器、云数据库特惠,3折优惠券】:https://cloud.tencent.com/redirect.php?redirect=1014&cps_key=b351b2fc50b15866ff9d19b58a5df0f5&from=console

有了服务器,那么将本地文件上传到服务器上面,只需要用

scp

命令就好:

$ scp <本地文件路径> <服务器角色>@<服务器ip地址>:<服务器文件路径>

上传代码参考文章

那么怎么定是执行呢?服务器一般都是 linux 系统,linux 系统自带一个命令叫

crontab

,用这个命令就可以定制执行了。

这一套组合拳打下来,你说骚不骚?

0x05 最后总结

爬虫用 aiohttp 来写还是用 Scrapy 来写,自己定夺,他们各有各的好处。

Scrapy框架完整,结果清晰;

aiohttp 速度更快,非常灵活。

所以,想用什么写爬虫,要根据你自己的需求来定。但是皮爷最近搞的东西,打算用 aiohttp 来自己做一套框架,来专门为自己使用。

Python爬虫加速神器的小试的更多相关文章

  1. Python爬虫之使用celery加速爬虫

      celery是一个基于分布式消息传输的异步任务队列,它专注于实时处理,同时也支持任务调度.关于celery的更多介绍及例子,笔者可以参考文章Python之celery的简介与使用.   本文将介绍 ...

  2. python爬虫学习(6) —— 神器 Requests

    Requests 是使用 Apache2 Licensed 许可证的 HTTP 库.用 Python 编写,真正的为人类着想. Python 标准库中的 urllib2 模块提供了你所需要的大多数 H ...

  3. 小白学 Python 爬虫(4):前置准备(三)Docker基础入门

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  4. Python爬虫入门一之综述

    大家好哈,最近博主在学习Python,学习期间也遇到一些问题,获得了一些经验,在此将自己的学习系统地整理下来,如果大家有兴趣学习爬虫的话,可以将这些文章作为参考,也欢迎大家一共分享学习经验. Pyth ...

  5. python爬虫学习 —— 总目录

    开篇 作为一个C党,接触python之后学习了爬虫. 和AC算法题的快感类似,从网络上爬取各种数据也很有意思. 准备写一系列文章,整理一下学习历程,也给后来者提供一点便利. 我是目录 听说你叫爬虫 - ...

  6. 【图文详解】python爬虫实战——5分钟做个图片自动下载器

    python爬虫实战——图片自动下载器 之前介绍了那么多基本知识[Python爬虫]入门知识,(没看的先去看!!)大家也估计手痒了.想要实际做个小东西来看看,毕竟: talk is cheap sho ...

  7. 【Python爬虫】入门知识

    爬虫基本知识 这阵子需要用爬虫做点事情,于是系统的学习了一下python爬虫,觉得还挺有意思的,比我想象中的能干更多的事情,这里记录下学习的经历. 网上有关爬虫的资料特别多,写的都挺复杂的,我这里不打 ...

  8. Python实战:Python爬虫学习教程,获取电影排行榜

    Python应用现在如火如荼,应用范围很广.因其效率高开发迅速的优势,快速进入编程语言排行榜前几名.本系列文章致力于可以全面系统的介绍Python语言开发知识和相关知识总结.希望大家能够快速入门并学习 ...

  9. Python爬虫入门:综述

    大家好哈,最近博主在学习Python,学习期间也遇到一些问题,获得了一些经验,在此将自己的学习系统地整理下来,如果大家有兴趣学习爬虫的话,可以将这些文章作为参考,也欢迎大家一共分享学习经验. Pyth ...

随机推荐

  1. Thrift 源码学习一——源码结构

    Thrift 客户端与服务端的交互图 源码结构 传输层 TTransport: TTransport:客户端传输层抽象基础类,read.write.flush.close 等方法 TSocket 与 ...

  2. Android——Android和SVN::::SVN+delete项目

    SVN使用笔记(比较详细) http://www.cnblogs.com/merray/p/4182380.html 删除项目 http://jingyan.baidu.com/article/c74 ...

  3. PyCharm 2018 最新激活方式总结(最新最全最有效!!!)

    PyCharm 2018 最新激活方式总结(最新最全最有效!!!) 欲善其事,必先利其器.这里我为大家提供了三种激活方式: 授权服务器激活:适合小白,一步到位,但服务器容易被封 激活码激活:适合小白, ...

  4. ( 转 )超级惊艳 10款HTML5动画特效推荐

    今天我们要来推荐10款超级惊艳的HTML5动画特效,有一些是基于CSS3和jQuery的,比较实用,特别是前几个HTML5动画,简直酷毙了,现在将它们分享给大家,也许你能用到这些HTML5动画和jQu ...

  5. Java知多少(80)图形界面设计基础

    早先程序使用最简单的输入输出方式,用户在键盘输入数据,程序将信息输出在屏幕上.现代程序要求使用图形用户界面(Graphical User Interface,GUI),界面中有菜单.按钮等,用户通过鼠 ...

  6. 极速打包【shell版】

    同步发表至 http://avenwu.github.io/2014/12/16/fast_apk_release/ 前言 前阵子无意间看到美团的技术文章,一口气读了几篇java.android相关的 ...

  7. matlab中如何将视频保存成图像

    利用MATLAB将视频的每一帧保存成一幅图像,并自动命名.本文方法简单,容易学习. 首先,读入视频.代码如下: mov = VideoReader('xxxxxx.avi'); % 将xxxxxx.a ...

  8. (转)java 层调用Jni(Ndk) 持久化c c++ 对象

    对于Jni(Ndk) 很多人应该都有印象,Android的ndk接触到的机会相对会比较多,本例子以android平台为例,pc端的话就以简单的windows为例, 编码完用vs 或是 gcc进行编译成 ...

  9. 很好的git教程

    http://www.liaoxuefeng.com/这里的git教程很好,我是从这入的门.

  10. Android 数据库 大量插入 事务开启

    对比在Android中批量插入数据的3中方式对比(各插入1W条数据所花费的时间): 1. 一个一个插入 publicstaticboolean insert(SQLiteOpenHelper open ...