Convolution and polynomial multiplication
https://www.mathworks.com/help/matlab/ref/conv.html?s_tid=gn_loc_drop
conv
Convolution and polynomial multiplication
Description
w = conv(
returns the convolution of vectors u,v
)u
and v
. If u
and v
are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials.
Examples
Polynomial Multiplication via Convolution
Create vectors u
and v
containing the coefficients of the polynomials and .
u = [1 0 1];
v = [2 7];
Use convolution to multiply the polynomials.
w = conv(u,v)
w = 2 7 2 7
w
contains the polynomial coefficients for .
Vector Convolution
Create two vectors and convolve them.
u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w = 1 2 2 1 0 1 2 2 1
The length of w
is length(u)+length(v)-1
, which in this example is 9
.
Central Part of Convolution
Create two vectors. Find the central part of the convolution of u
and v
that is the same size as u
.
u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w = 15 5 -9 7 6 7 -1
w
has a length of 7
. The full convolution would be of length length(u)+length(v)-1
, which in this example would be 10.
Input Arguments
u,v
— Input vectors
vectors
Input vectors, specified as either row or column vectors. The
output vector is the same orientation as the first input argument, u
.
The vectors u
and v
can be different
lengths or data types.
Data Types: double
| single
Complex Number Support: Yes
shape
— Subsection of convolution
'full'
(default) | 'same'
| 'valid'
Subsection of the convolution, specified as 'full'
, 'same'
,
or 'valid'
.
'full' |
Full convolution (default). |
'same' |
Central part of the convolution of the same size as |
'valid' |
Only those parts of the convolution that are computed |
Convolution
@向量的卷积 重叠面积
The convolution of two vectors, u
and v
, represents the area of overlap under the points as v
slides across u
. Algebraically, convolution is the same operation as multiplying polynomials whose coefficients are the elements of u
and v
.
Let m = length(u)
and n = length(v)
. Then w
is the vector of length m+n-1
whose k
th element is
The sum is over all the values of j
that lead to legal subscripts for u(j)
and v(k-j+1)
, specifically j
=
max(1,k+1-n):1:min(k,m)
. When m
=
n
, this gives
w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)
https://www.zhihu.com/question/22298352?rf=21686447
“
:
卷积就是带权的积分
:
从概率论的角度来理解吧,举例为X Y 两组连续型随机变量,那么令Z=X+Y ,当X Y两组变量独立时,就能推导出卷积公式了,fz=fx*fy的意义就是在于两组变量叠加出来的概率密度,也就是算两信号X Y混叠起来的时候的响应
:
他的女儿是做环保的,有一次她接到一个项目,评估一个地区工厂化学药剂的污染(工厂会排放化学物质,化学物质又会挥发散去),然后建模狮告诉她药剂的残余量是个卷积。她不懂就去问她爸爸,prof就给她解释了。假设t时刻工厂化学药剂的排放量是f(t) mg,被排放的药物在排放后Δt时刻的残留比率是g(Δt) mg/mg;那么在u时刻,对于t时刻排放出来的药物,它们对应的Δt=u-t,于是u时刻化学药剂的总残余量就是∫f(t)g(u-t)dt,这就是卷积了。
”
Convolution and polynomial multiplication的更多相关文章
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- matlab中卷积convolution与filter用法
转自:https://blog.csdn.net/dkcgx/article/details/46652021 转自:https://blog.csdn.net/Reborn_Lee/article/ ...
- 图像处理之基础---卷积及其快速算法的C++实现
头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free so ...
- 二维码详解(QR Code)
作者:王子旭链接:https://zhuanlan.zhihu.com/p/21463650来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2016.7.5 更新:长文 ...
- CKKS Part3: CKKS的加密和解密
本篇文章翻译于CKKS EXPLAINED, PART 3: ENCRYPTION AND DECRYPTION,主要介绍CKKS方案的加密和解密. 介绍 在上一篇 CKKS Part2: CKKS的 ...
- FZU 2215 Simple Polynomial Problem(简单多项式问题)
Description 题目描述 You are given an polynomial of x consisting of only addition marks, multiplication ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- polynomial time
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time An algorithm is said to be of polynomi ...
- POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)
Modular multiplication of polynomials Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3 ...
随机推荐
- Java运行时,各种类型存储介绍
Java的内存分配 Java程序运行时的内存结构分成:方法区.栈内存.堆内存.本地方法栈几种. 方法区 存放装载的类数据信息,包括:基本信息:每个类的全限定名.每个类的直接超类的全限定 ...
- erlang-百度云推送Android服务端功能实现-erlang
百度云推送官方地址http://developer.baidu.com/wiki/index.php?title=docs/cplat/push 简单的介绍下原理: 百度云推送支持IOS和Androi ...
- 最短路径问题-Floyd算法
概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用 ...
- opencv播放视屏并控制位置
原文地址:http://blog.csdn.net/augusdi/article/details/9000592 cvGetCaptureProperty是我们需要使用到的获取视频属性的函数. do ...
- Hibernate学习(1):查询demo
1.数据库(mysql)创建脚本 DROP TABLE IF EXISTS role; CREATE TABLE IF NOT EXISTS `role`( `id` ) NOT NULL AUTO_ ...
- Spring-导入和混合配置
javaConfig模式下: 导入: @Import({XX.class,YY.class,...}) 混合: @ImportResource("classpath:xxx.xml" ...
- Yii2自带验证码实现
总共分为三个方面:控制器配置.模型rules配置和视图配置. 第一步:控制器配置 将下列代码配置在actions中,请求验证码链接对应为 “控制器/captcha” 'captcha' => [ ...
- 重载 CreateParams 方法[1]: 从一个例子开始(取消窗口最大化、最小化按钮的三种方法)
方法1: 使用 TForm 的 BorderIcons 属性 unit Unit1; interface uses Windows, Messages, SysUtils, Variants, C ...
- 怎样用Javascript定义一个类
其实Javascript中没有类这个定义,但是有类这个概念.很多人都写过这样的代码,对,没错,就是如下代码,清晰的不能再清晰了,就是一个关键字 function,然后定义一个方法名,方法名后紧跟一对括 ...
- 如何在 React Native 中写一个自定义模块
https://my.oschina.net/jpushtech/blog/983230