https://www.mathworks.com/help/matlab/ref/conv.html?s_tid=gn_loc_drop

conv

Convolution and polynomial multiplication

Syntax

Description

example

w = conv(u,v) returns the convolution of vectors u and v. If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials.

example

w = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.

 

Examples

collapse all

Polynomial Multiplication via Convolution

Create vectors u and v containing the coefficients of the polynomials and .

u = [1 0 1];
v = [2 7];

Use convolution to multiply the polynomials.

w = conv(u,v)
w =

     2     7     2     7

w contains the polynomial coefficients for .

Vector Convolution

Create two vectors and convolve them.

u = [1 1 1];
v = [1 1 0 0 0 1 1];
w = conv(u,v)
w =

     1     2     2     1     0     1     2     2     1

The length of w is length(u)+length(v)-1, which in this example is 9.

 

Central Part of Convolution

Create two vectors. Find the central part of the convolution of u and v that is the same size as u.

u = [-1 2 3 -2 0 1 2];
v = [2 4 -1 1];
w = conv(u,v,'same')
w =

    15     5    -9     7     6     7    -1

w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10.

 

Input Arguments

u,v — Input vectors
vectors

Input vectors, specified as either row or column vectors. The
output vector is the same orientation as the first input argument, u.
The vectors u and v can be different
lengths or data types.

Data Types: double | single
Complex Number Support: Yes

shape — Subsection of convolution
'full' (default) | 'same' | 'valid'

Subsection of the convolution, specified as 'full', 'same',
or 'valid'.

'full'

Full convolution (default).

'same'

Central part of the convolution of the same size as u.

'valid'

Only those parts of the convolution that are computed
without the zero-padded edges. Using this option, length(w) is max(length(u)-length(v)+1,0),
except when length(v) is zero. If length(v)
= 0
, then length(w) = length(u).

Convolution

@向量的卷积 重叠面积

The convolution of two vectors, u and v, represents the area of overlap under the points as v slides across u. Algebraically, convolution is the same operation as multiplying polynomials whose coefficients are the elements of u and v.

Let m = length(u) and n = length(v) . Then w is the vector of length m+n-1 whose kth element is

The sum is over all the values of j that lead to legal subscripts for u(j) and v(k-j+1), specifically j = max(1,k+1-n):1:min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

https://www.zhihu.com/question/22298352?rf=21686447


卷积就是带权的积分

从概率论的角度来理解吧,举例为X Y 两组连续型随机变量,那么令Z=X+Y ,当X Y两组变量独立时,就能推导出卷积公式了,fz=fx*fy的意义就是在于两组变量叠加出来的概率密度,也就是算两信号X Y混叠起来的时候的响应
:
他的女儿是做环保的,有一次她接到一个项目,评估一个地区工厂化学药剂的污染(工厂会排放化学物质,化学物质又会挥发散去),然后建模狮告诉她药剂的残余量是个卷积。她不懂就去问她爸爸,prof就给她解释了。假设t时刻工厂化学药剂的排放量是f(t) mg,被排放的药物在排放后Δt时刻的残留比率是g(Δt) mg/mg;那么在u时刻,对于t时刻排放出来的药物,它们对应的Δt=u-t,于是u时刻化学药剂的总残余量就是∫f(t)g(u-t)dt,这就是卷积了。

Convolution and polynomial multiplication的更多相关文章

  1. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  2. matlab中卷积convolution与filter用法

    转自:https://blog.csdn.net/dkcgx/article/details/46652021 转自:https://blog.csdn.net/Reborn_Lee/article/ ...

  3. 图像处理之基础---卷积及其快速算法的C++实现

    头文件: /* * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), zmjerry@163.com * * This program is free so ...

  4. 二维码详解(QR Code)

    作者:王子旭链接:https://zhuanlan.zhihu.com/p/21463650来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2016.7.5 更新:长文 ...

  5. CKKS Part3: CKKS的加密和解密

    本篇文章翻译于CKKS EXPLAINED, PART 3: ENCRYPTION AND DECRYPTION,主要介绍CKKS方案的加密和解密. 介绍 在上一篇 CKKS Part2: CKKS的 ...

  6. FZU 2215 Simple Polynomial Problem(简单多项式问题)

    Description 题目描述 You are given an polynomial of x consisting of only addition marks, multiplication ...

  7. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  8. polynomial time

    https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time An algorithm is said to be of polynomi ...

  9. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

随机推荐

  1. linux -- Linux下的五个查找命令:grep、find、locate、whereis、which

    1.grep grep(General Regular Expression Parser,通用规则表达式分析程序)是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来. 它的使 ...

  2. DexClassLoader

    DexClassLoader加载自己写的第三方jar包,例如金山毒霸需要加载ksremote.jar. 现在将DexClassLoader加载jar包成果分享一下.   1.新建Android工程,封 ...

  3. par函数fg参数-控制前景色

    fg参数用来控制前景色,其实指的就是x轴和y轴的轴线和刻度线的颜色 在R语言中,会根据fg, col 任何一个参数的值,自动的将两个参数的值设置为相同的值,举个例子: par(fg = "r ...

  4. PHP实现金额数字转换成大写函数

    <?php header("Content-Type:text/html;charset=utf-8"); function num_to_upper($num) { $d ...

  5. python改动文件内容,不须要read,write多个动作。

    python  要改动文件内容,经常使用 是先read.后write , 再 rename.非常不爽. 比方:须要 把       yuv_dir ="../HD/"   # &q ...

  6. AOP技术应用和研究--AOP简单应用

    为了更好的理解AOP实践和体现AOP的优势.我们始终将OOP和AOP的比較贯穿到下文中.并在终于总结出AOP与OOP相比所拥有的长处,AOP的缺点以及AOP一般的使用场景. 1.1 问题空间到解空间的 ...

  7. c++ template<typename T>

    template <typename T> 网上查了半天不知所云,网上说的太多,俺只是要知道所需要的就可以了. 写了个程序试了一下,其实就是这个东西可以根据你所需要的类型就行匹配.其实就是 ...

  8. iperf/netperf网络性能测试工具、Wireshark网络包分析工具

    iperf   http://www.linuxidc.com/Linux/2014-05/101160.htm netperf  http://www.linuxidc.com/Linux/2013 ...

  9. linux中,查看某个进程打开的文件数?

    需求描述: 今天在处理一个问题的时候,涉及到查看某个进程打开的文件数,在此记录下. 操作过程: 1.通过lsof命令查看某个特定的进程打开的文件数 [root@hadoop3 ~]# lsof -p ...

  10. 而桌面app向来是web前端开发开发人员下意识的避开方

    web前端语言的发展有目共睹, 从原来的pc web, 到后来的mobile SAP, 再到 nodejs,全站工程师应运而生. js快速而且稳健的发展让人不得不重视, 相应的前端开发人员的地位也越来 ...