H - Roads not only in Berland

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d
& %I64u

Description

Berland Government decided to improve relations with neighboring countries. First of all, it was decided to build new roads so that from each city of Berland and neighboring countries it became possible to reach all the others. There are n cities
in Berland and neighboring countries in total and exactly n - 1 two-way roads. Because of the recent financial crisis, the Berland Government is strongly pressed for money, so to build a new
road it has to close some of the existing ones. Every day it is possible to close one existing road and immediately build a new one. Your task is to determine how many days would be needed to rebuild roads so that from each city it became possible to reach
all the others, and to draw a plan of closure of old roads and building of new ones.

Input

The first line contains integer n (2 ≤ n ≤ 1000) — amount of cities in Berland and neighboring countries. Next n - 1 lines
contain the description of roads. Each road is described by two space-separated integers aibi (1 ≤ ai, bi ≤ n, ai ≠ bi)
— pair of cities, which the road connects. It can't be more than one road between a pair of cities. No road connects the city with itself.

Output

Output the answer, number t — what is the least amount of days needed to rebuild roads so that from each city it became possible to reach all the others. Then output t lines
— the plan of closure of old roads and building of new ones. Each line should describe one day in the format i j u v — it means that road between cities i and j became
closed and a new road between cities u and v is built. Cities are numbered from 1. If the answer is not unique, output any.

Sample Input

Input
2
1 2
Output
0
Input
7
1 2
2 3
3 1
4 5
5 6
6 7
Output
1

3 1 3 7

这道题目是简单的并查集应用,直接给出AC代码
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int father[1005];
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
struct Node
{
int x,y;
}c[1005];
int num;
int tag[1005];
int res[1005];
int main()
{
int n;
int a,b;
scanf("%d",&n);
for(int i=1;i<=1000;i++)
father[i]=i;
int cnt=0;int num=0;
for(int i=1;i<=n-1;i++)
{
scanf("%d%d",&a,&b);
int fa=find(a);
int fb=find(b);
if(fa!=fb)
{
father[fa]=fb;
}
else
{
c[cnt].x=a;
c[cnt++].y=b;
}
}
memset(tag,0,sizeof(tag));
int cot=0;
for(int i=1;i<=n;i++)
{
if(!tag[find(i)])
{
res[cot++]=find(i);
num++;
tag[find(i)]=1;
}
}
printf("%d\n",num-1);
int tot=1;
for(int i=0;i<num-1;i++)
{
printf("%d %d",c[i].x,c[i].y);
printf(" %d %d\n",res[0],res[tot]);
tot++;
}
return 0; }

CodeForces Roads not only in Berland(并查集)的更多相关文章

  1. Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集

    http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...

  2. Codeforces Round #376 (Div. 2) C. Socks---并查集+贪心

    题目链接:http://codeforces.com/problemset/problem/731/C 题意:有n只袜子,每只都有一个颜色,现在他的妈妈要去出差m天,然后让他每天穿第 L 和第 R 只 ...

  3. Codeforces 766D. Mahmoud and a Dictionary 并查集 二元敌对关系 点拆分

    D. Mahmoud and a Dictionary time limit per test:4 seconds memory limit per test:256 megabytes input: ...

  4. Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序

    https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...

  5. POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )

    Constructing Roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19884   Accepted: 83 ...

  6. codeforces div2 603 D. Secret Passwords(并查集)

    题目链接:https://codeforces.com/contest/1263/problem/D 题意:有n个小写字符串代表n个密码,加入存在两个密码有共同的字母,那么说这两个密码可以认为是同一个 ...

  7. CodeForces 698B Fix a Tree (并查集应用)

    当时也是想到了并查集,但是有几个地方没有想清楚,所以就不知道怎么写了,比如说如何确定最优的问题.赛后看了一下别人的思路,才知道自己确实经验不足,思维也没跟上. 其实没有那么复杂,这个题目我们的操作只有 ...

  8. Codeforces 977E:Cyclic Components(并查集)

    题意 给出nnn个顶点和mmm条边,求这个图中环的个数 思路 利用并查集的性质,环上的顶点都在同一个集合中 在输入的时候记录下来每个顶点的度数,查找两个点相连,且度数均为222的点,如果这两个点的父节 ...

  9. codeforces #541 D. Gourmet choice(拓扑+并查集)

    Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the wo ...

随机推荐

  1. 解析 Spring ConversionService

    弄了张图,方便以后一眼能想起是怎么回事. 前提,看这里:Spring Framework 官方文档学习(四)之Validation.Data Binding.Type Conversion(二) .

  2. (转)typedef 函数指针的用法

    typedef 函数指针的用法   在网上搜索函数指针,看到一个例子.开始没看懂,想放弃,可是转念一想,这个用法迟早要弄懂的,现在多花点时间看懂它,好过以后碰到了要再花一倍时间来弄懂它.其实很多时候都 ...

  3. zookeeper_process内存泄露问题

    单线程模式下,不能递归调用zookeeper_process函数,否则会造成内存泄露. 下列图是在watcher中调用zookeeper_process时,用valgrind检测到的情况:

  4. jdbcType 与 Java type

    JDBC Type           Java Type CHAR                String VARCHAR             String LONGVARCHAR      ...

  5. Python图像处理库PIL的ImageSequence模块介绍

    ImageSequence模块包括了一个wrapper类,它能够让用户迭代訪问图形序列中每一帧图像. 一.ImageSequence模块的函数 1.  Iterator 定义:ImageSequenc ...

  6. Java精选笔记_JDBC

    JDBC 概述 什么是JDBC JDBC全称是Java数据库连接(Java Database Connectivity),应用程序可通过这套API连接到关系数据库,并使用SQL语句来完成对数据库中数据 ...

  7. try catch finally的执行顺序

    1.将预见可能引发异常的代码包含在try语句块中. 2.如果发生了异常,则转入catch的执行.catch有几种写法: catch 这将捕获任何发生的异常. catch(Exception e) 这将 ...

  8. Swift - UITableView的用法

    因为倾向于纯代码编码,所以不太喜欢可视化编程,不过也略有研究,所以项目里面的所有界面效果,全部都是纯代码编写! 终于到了重中之重的tableview的学习了,自我学习ios编程以来,工作中用得最多的就 ...

  9. 浅谈ITIL

    本节内容 浅谈ITIL CMDB介绍 Django自定义用户认证 Restful 规范 资产管理功能开发 浅谈ITIL TIL即IT基础架构库(Information Technology Infra ...

  10. ZooKeeper(六)-- CAP和BASE理论、ZAB协议

    一.CAP理论和BASE理论 1.CAP理论 CAP理论,指的是在一个分布式系统中,不可能同时满足Consistency(一致性). Availability(可用性).Partition toler ...