汉诺塔的传说

法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

  不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。
  这需要多少次移动呢?这里需要递归的方法。假设有n片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2^n-1。n=64时,
假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下:
  18446744073709551615秒
  这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。

python汉诺塔

#函数的递归算法 汉诺塔游戏
def hanoi(n,x,y,z):
if n==1:
print(x,'-->',z)
else:
hanoi(n-1,x,z,y)#将前n-1个盘子从x移动到y上
hanoi(1,x,y,z)#将最底下的最后一个盘子从x移动到z上
hanoi(n-1,y,x,z)#将y上的n-1个盘子移动到z上
n=int(input('请输入汉诺塔的层数:'))
hanoi(n,'x','y','z') 》请输入汉诺塔的层数:3
x --> z
x --> y
z --> y
x --> z
y --> x
y --> z
x --> z
 

python递归——汉诺塔的更多相关文章

  1. python 递归-汉诺塔

    # 汉诺塔 a = "A" b = "B" c = "C" def hano(a, b, c, n): if n == 1: print(& ...

  2. python 游戏 —— 汉诺塔(Hanoita)

    python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...

  3. 递归:汉诺塔 - 零基础入门学习Python024

    递归:汉诺塔 让编程改变世界 Change the world by program 似乎谈到递归算法就要拿汉诺塔来举例,没办法,因为小甲鱼小时候太笨了,这个游戏老是玩不过关,好不容易在自学编程的时候 ...

  4. 【Python学习之七】递归——汉诺塔问题的算法理解

    汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...

  5. Python 实现汉诺塔问题(递归)

    有三根柱子一次为A,B,C 现在A柱子上有3个块,按照汉诺塔规则移动到C柱子上去,打印步骤? 我们这样理解:A为原始柱,C为目标柱,B为缓冲柱 1.定义一个函数move(n,a,b,c),n为原始柱上 ...

  6. Python之汉诺塔递归运算

    汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆 ...

  7. 【学习】Python解决汉诺塔问题

    参考文章:http://www.cnblogs.com/dmego/p/5965835.html   一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好!   ...

  8. Python实现汉诺塔问题的可视化(以动画的形式展示移动过程)

    学习Python已经有一段时间了,也学习了递归的方法,而能够实践该方法的当然就是汉诺塔问题了,但是这次我们不只是要完成对汉诺塔过程的计算,还要通过turtle库来体现汉诺塔中每一层移动的过程. 一.设 ...

  9. python解决汉诺塔问题

    今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu. ...

随机推荐

  1. iOS 画图基础

    基础要点: 1,画图不可以在 ViewController 里,而是应该在一个 UIView 的子类中,比如新建一个 DrawView 继承自 UIView. 2,覆盖 UIView 的 drawRe ...

  2. uploadPreview 上传图片前预览 IE9 索引无效的问题

    最近公司的项目用到比较多的上传图片的操作,所以用到了基于jquery的上传前预览的插件 uploadPreview ,后来测试的时候发现在IE9下报索引无效的问题. 异常的产生方式 放一个file控件 ...

  3. DOS文件操作命令

    内部命令 COPY---文件固执命令 格式:COPY [源盘:][路径]<源文件名> [目标盘][路径]<目标文件名> 拷贝一个或多个文件到指定盘上 1)COPY是文件对文件的 ...

  4. php中mvc框架总结1(7)

    1.代码结构的划分: 目前的目录结构: /站点根目录 /application/应用程序目录 Model/模型目录 View/视图目录 Back/后台 front/ test/测试平台 Control ...

  5. JDBC技术(汇聚页)

    JDBC代表Java数据库连接(Java Database Connectivity),它是用于Java编程语言和数据库之间的数据库无关连接的标准Java API, 换句话说:JDBC是用于在Java ...

  6. linux中python配置tab=4个空格,并显示行号。

    vim ~/.vimrc 写入: set ts=4 set nu :wq 保存. source ~/.vimrc 使之生效.

  7. 4. STL编程四

    1. 类模板的默认参数规则: #include <iostream> using namespace std; /* //类模板,不调用不编译(函数):变量还是规范 template< ...

  8. .NET Core容器化之多容器应用部署-使用Docker-Compose

    原文补充: -- docker-compose.ymlversion: ' services: mvc-web: container_name: mvc.web.compose build: . re ...

  9. BootStrap Modal 点击空白时自动关闭

    本文为大家讲解的是如何禁用 BootStrap Modal 点击空白时自动关闭的方法,感兴趣的同学参考下. 方法如下 $('#myModal').modal({backdrop: 'static', ...

  10. FlowPortal-BPM——验证控件

    自上而下依次是: 非空验证.范围验证.规则表达式验证.比较验证.自定义验证 非空验证的使用: 1.ControlToValidate - 监控的控件 2.ErrorMessage - 为空时提示信息