题目传送门

  题意:告诉你存在一个未知项系数最高为10的$f(x)$,你最多可以有50次询问,每次询问给出一个$x'$,系统会返回你$f(x')$的值,你需要猜一个$x''$,使得$f(x'')=0$,所有运算都是取模1e6+3下进行的。

  思路:拉格朗日插值法的模板题。yyb聚聚的公式

  $p(x)=$\sum\limits_{n}^{i=0}$(-1)n-i*p(i)*x*(x-1)*(x-2)*(x-3)*……*(x-n)/((n-i)! * i! * (x-i))$

所以先暴力询问0-10的所有答案,然后判断11-p的答案是否为0即可。

#include<bits/stdc++.h>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const ll p=1e6+;
ll a[],f[],jcinv[],inv[p+];
ll qpow(ll a,ll b){
ll res=;
a%=p;
while(b){
if(b&)res=res*a%p;
b>>=;
a=a*a%p;
}
return res;
}
void init(){
f[]=;
for(int i=;i<=;i++)f[i]=f[i-]*i%p;
jcinv[]=qpow(f[],p-);
for(int i=;i>;i--){
jcinv[i-]=jcinv[i]*i%p;
}
inv[]=;
for(int i=;i<=p;i++)
{
inv[i]=inv[p%i]*(p-p/i)%p;
}
}
int main(){
init();
for(int i=;i<=;i++)
{
printf("? %d\n",i);
fflush(stdout);
scanf("%lld",&a[i]);
if(a[i]==){
printf("! %d\n",i);
fflush(stdout);
return ;
}
}
for(int k=;k<p;k++)
{
ll up=;
for(int i=;i<=;i++)up=up*(k-i)%p;
ll res=;
for(int i=;i<=;i++)
{
ll tep=;
tep=a[i]*up%p*jcinv[-i]%p*jcinv[i]%p*inv[k-i]%p;
res=(res+tep*(i%==?:-)+p)%p;
}
if(res==){
printf("! %d\n",k);
fflush(stdout);
return ;
}
}
printf("! -1\n");
fflush(stdout);
}

E - Guess the Root 拉格朗日差值法+交互的更多相关文章

  1. P5437-[XR-2]约定【拉格朗日差值,数学期望】

    正题 题目链接:https://www.luogu.com.cn/problem/P5437 题目大意 \(n\)个点的完全图,连接\(i,j\)的边权值为\((i+j)^k\).随机选出一个生成树, ...

  2. [51nod]1229 序列求和 V2(数学+拉格朗日差值)

    题面 传送门 题解 这种颓柿子的题我可能死活做不出来-- 首先\(r=0\)--算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\) 设 \[s_p ...

  3. 差值的再议-Hermite差值

    1. 插值法 插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法. 如果这特定 ...

  4. 【数据结构】 顺序表查找(折半查找&&差值查找)

    #include <stdio.h> #include <stdlib.h> #include <time.h> #define MAXSIZE 10 首先构造一个 ...

  5. 二值法方法综述及matlab程序

    在某些图像处理当中一个关键步是二值法,二值化一方面能够去除冗余信息,另一方面也会使有效信息丢失.所以有效的二值化算法是后续的处理的基础.比如对于想要最大限度的保留下面图的中文字,以便后续的定位处理. ...

  6. 九度oj 题目1096:日期差值

    题目描述: 有两个日期,求两个日期之间的天数,如果两个日期是连续的我们规定他们之间的天数为两天 输入: 有多组数据,每组数据有两行,分别表示两个日期,形式为YYYYMMDD 输出: 每组数据输出一行, ...

  7. 奇妙的算法【10】TX--有效号码、最,小耗时、最小差值、差值输出、异或结果

    昨晚刚刚写的几道算法题,难度也还行,就是全部AC有些困难,当时第一题AC.第二题AC 60%,第四题AC 40%,第五题没有时间写完了,这个应该全部AC了:其中第三题没有写出来 1,是否存在符合规范的 ...

  8. PHP中比较两个时间的大小与日期的差值

    在这里我们全用到时间戳 mktime(hour,minute,second,month,day,year,[is_dst])     其参数可以从右向左省略,任何省略的参数都会被设置成本地日期和时间的 ...

  9. 用Scala实现集合中相邻元素间的差值

    欢迎转载,转载请注明出处,徽沪一郎. 概要 代码这东西,不写肯定不行,新学Scala不久,将实际遇到的一些问题记录下来,日后也好查找. 今天讲的是如何计算同一集合中元素两两之间的差值,即求开始集合(a ...

随机推荐

  1. max文件属性设置,

    之前一直都没找到 用到的时候就是用net 弄了.哎.还在开发东西都是在9上面, 这次脚本必须在 max8 上面 逼的我找到了他 getFileAttribute <filename_string ...

  2. cxf的一些使用说明

    /** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agree ...

  3. scalr调用openstack接口

  4. kubernetes 1.6 RBAC访问控制

    一.简介 之前,Kubernetes中的授权策略主要是ABAC(Attribute-Based Access Control).对于ABAC,Kubernetes在实现上是比较难用的,而且需要Mast ...

  5. Linux的进程与服务(二)

    1.查看进程 ps - processes snapshot ps aue ps -elf [root@localhost ~]# ps aue USER PID %CPU %MEM VSZ RSS ...

  6. 安装及运行 RabbitMQ 服务器 (linux) 失败! 安装erlang 失败,无法继续

    文档 http://www.rabbitmq.com/install-rpm.html 安装前置条件 Before installing RabbitMQ, you must install Erla ...

  7. Codeforces 766D Mahmoud and a Dictionary 2017-02-21 14:03 107人阅读 评论(0) 收藏

    D. Mahmoud and a Dictionary time limit per test 4 seconds memory limit per test 256 megabytes input ...

  8. java并发编程实战:第十章----避免活跃性危险

    在安全性和活跃性之间通常存在着某种制衡 一.死锁 定义:在线程A持有锁L并想获得锁M的同时,线程B持有锁M并尝试获得锁L,线程AB均不会释放自己的锁,那么这两个线程将永远地等待下去 在数据库系统的设中 ...

  9. pro1

    #include<iostream> using namespace std; int main(void) { int i,a[],sum; cin>>i; for(i=0; ...

  10. 常用脚本--归档ERRORLOG

    SQL Server error log  7组日志文件默认情况下不会自动切换到下一个文件, 一般在SQL Server 重新启动后才会切换error log,如果SQL Server长期未重启或因为 ...