python 逆波兰式
逆波兰式,也叫后缀表达式
技巧:为简化代码,引入一个不存在的运算符#,优先级最低。置于堆栈底部
class Stack(object):
'''堆栈'''
def __init__(self):
self._stack = [] def pop(self):
return self._stack.pop() def push(self, x):
self._stack.append(x)
一、表达式无括号
def solve(bds):
'''不带括号,引入#运算符'''
pro = dict(zip('^*/+-#', [3,2,2,1,1,0]))
out = []
s = Stack()
s.push('#')
for x in bds:
if x in '^*/+-':
t = s.pop()
while pro[x] <= pro[t]:
out.append(t)
t = s.pop() s.push(t)
s.push(x)
else:
out.append(x) while not s.is_null():
out.append(s.pop()) return out[:-1]
bds1 = 'a+b/c^d-e' # abcd^/+e-
print(bds1, ''.join(solve(bds1)))
二、表达式有括号
def solve(bds):
'''带括号,引入#运算符'''
pro = dict(zip('^*/+-#', [3,2,2,1,1,0]))
out = []
s = Stack()
s.push('#')
for x in bds:
if x == '(': # ①左括号 -- 直接入栈
s.push(x)
elif x == ')': # ②右括号 -- 输出栈顶,直至左括号(舍弃)
t = s.pop()
while t != '(':
out.append(t)
t = s.pop()
elif x in '^*/+-': # ③运算符 -- 从栈顶开始,优先级不小于x的都依次弹出;然后x入栈
while True:
t = s.pop()
if t == '(': # 左括号入栈前优先级最高,而入栈后优先级最低!
s.push(t)
break
if pro[x] <= pro[t]:
out.append(t)
else:
s.push(t)
break
s.push(x)
else: # ④运算数 -- 直接输出
out.append(x) while not s.is_null():
out.append(s.pop()) return out[:-1] bds1 = 'a+b/c^d-e' # abcd^/+e-
bds2 = '(a+b)*c-(d+e)/f' # ab+c*de+f/- print(bds1, ''.join(solve(bds1)))
print(bds2, ''.join(solve(bds2)))
三、根据后缀表达式求值
def solve5(bds):
'''根据后缀表达式求值'''
jishuan = {
'^': lambda x,y: x**y,
'*': lambda x,y: x*y,
'/': lambda x,y: x/y,
'+': lambda x,y: x+y,
'-': lambda x,y: x-y
}
s = Stack()
for x in bds:
if x in '^*/+-':
num2, num1 = s.pop(), s.pop()
r = jishuan[x](float(num1), float(num2))
s.push(r)
else:
s.push(x) return s.pop() bds1 = '2+9/3^2-5' # 2932^/+5- -2
bds2 = '(1+2)*3-(4+5)/6' # ab+c*de+f/- 7.5 print(bds1, '=', solve5(solve(bds1)))
print(bds2, '=', solve5(solve(bds2))) #print(bds1, '=', eval(bds1))
print(bds2, '=', eval(bds2))
python 逆波兰式的更多相关文章
- javascript:逆波兰式表示法计算表达式结果
逆波兰式表示法,是由栈做基础的表达式,举个例子: 5 1 2 + 4 * + 3 - 等价于 5 + ((1 + 2) * 4) - 3 原理:依次将5 1 2 压入栈中, 这时遇到了运算符 + ...
- Haskell解决逆波兰式
摘自<Haskell趣学指南- Learn You a Haskell for Great Good> {- 逆波兰式(revese polish notation, RPN): 操作符出 ...
- [LeetCode]Evaluate Reverse Polish Notation(逆波兰式的计算)
原题链接:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/ 题目描述: Evaluate the value of a ...
- HDU1237 简单的计算器 【堆】+【逆波兰式】
简单的计算器 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- c# 逆波兰式实现计算器
语文不好,不太会组织语言,希望不要太在意. 如题,先简要介绍一下什么是逆波兰式 通常我们在写数学公式的时候 就是a+b+c这样,这种表达式称为中缀表达式,逆波兰式又称为后缀表达式,例如a+b 后缀 ...
- codechef Transform the Expression 转换成逆波兰式
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- NYOJ 35 表达式求值(逆波兰式求值)
http://acm.nyist.net/JudgeOnline/problemset.php?typeid=4 NYOJ 35 表达式求值(逆波兰式求值) 逆波兰式式也称后缀表达式. 一般的表达式求 ...
- Evaluate Reverse Polish Notation(逆波兰式)
Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are +, -, ...
- HDU1237 简单计算器 【栈】+【逆波兰式】
简单计算器 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
随机推荐
- 【[JXOI2017]加法】
江西竟然还有省选,而且还是可怜题,实在是有点可怕 这道题还是比较清真的,大概是最简单的可怜题? 首先看到最大值最小,就很容易想到了二分答案 对于一个二分出来的答案\(mid\),去把原数列扫一遍就可以 ...
- 【jQuery】todolist
1 2 3 用npm命令下载依赖,优点:不用去网上找链接,代码都一样 4.jQuery自动下载进node_modules文件下 npm install jquery --save 这句命令的意思是保 ...
- 修改Xcode工程名称
概述 有的时候需要在现有的项目上面开发一个新的项目,如果新建工程的话,就比较麻烦了,所以一般是直接现有的工程上面直接修改名字步骤如下: 1.修改工程名字 在这里修改完之后,会弹出一个对话框,点击Ren ...
- Spring(五)之Bean定义继承和依赖注入
一.Bean定义继承 bean定义可以包含许多配置信息,包括构造函数参数,属性值和特定于容器的信息,例如初始化方法,静态工厂方法名称等. 子bean定义从父定义继承配置数据.子定义可以根据需要覆盖某些 ...
- Linux中使用iptables开放特定端口
禁止其他主机对该特定主机进行访问和远程连接控制,所以只开放特定端口 只控制INPUT链就可达到控制其他主机对该主机的访问. 1.首先关闭INPUT链 iptables -P INPUT DROP 使用 ...
- webapi文件上传和下载
文件上传我们可以做上传文件保存到图片与导入数据,下载可以下载多样的文件. 上传:实例是单个文件导入 NopiHelper:地址 ①简单的上传图片进行保存,方法跟MVC中的一样 <form nam ...
- Linux 防止rm -rf 误删Shell脚本
#!/bin/bash #:set ff=unix #:set nobomb #-*- coding:utf-8 -*- ####################################### ...
- 前端基础-CSS是什么?
阅读目录 一. 什么是CSS 二. 为何要用CSS 三. 如何使用CSS 一. 什么是CSS CSS全称Cascading Style Sheet层叠样式表,是专用用来为HTML标签添加样式的. 样式 ...
- async await循环请求
var sleep = function (item,time) { return new Promise(function (resolve, reject) { setTimeout(functi ...
- ubuntu 如何进行文件、夹删除等操作
rm [选项] 文件-f, --force 强力删除,不要求确认-i 每删除一个文件或进入一个子目录都要求确认-I 在删除超过三个文件或者递归删除前要求确认-r, -R 递归删除子目录-d, --di ...