3171. [TJOI2013]循环格【费用流】
Description
,你可以沿着箭头防线在格子间行走。即如果(r,c)是一个左箭头,那么走到(r,c-1);如果是右箭头那么走到(r,c+1);如果是上箭头那么走到(r-1,c);如果是下箭头那么走到(r+1,c);每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。
一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以i沿着箭头最终回到起始位置。如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。给定一个循环格,你需要计算最少需要修改多少个元素使其完美。
Input
第一行两个整数R,C。表示行和列,接下来R行,每行C个字符LRUD,表示左右上下。
Output
一个整数,表示最少需要修改多少个元素使得给定的循环格完美
Sample Input
RRRD
URLL
LRRR
Sample Output
HINT
1<=R,L<=15
原题题意即为将图转化成每个点入度出度恰好为1
拆点,拆成入点和出点
向本来指向的边连费用为0的边
向周围的边连费用为1的边
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#define id(x,y) (x-1)*m+y
#define N (10000+10)
#define M (1000000+10)
using namespace std;
bool used[N];
int n,m,s,e,z,Ans,a[][];
int num_edge,head[N];
int dis[N],INF,pre[N];
int dx[]= {,-,,,},dy[]= {,,,-,};
char st[];
queue<int>q;
struct node
{
int to,next,Flow,Cost;
} edge[M*]; void add(int u,int v,int l,int c)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].Flow=l;
edge[num_edge].Cost=c;
head[u]=num_edge;
} bool Spfa(int s,int e)
{
memset(dis,0x7f,sizeof(dis));
memset(pre,-,sizeof(pre));
dis[s]=;
used[s]=true;
q.push(s);
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=head[x]; i!=; i=edge[i].next)
if (dis[x]+edge[i].Cost<dis[edge[i].to] && edge[i].Flow>)
{
dis[edge[i].to]=dis[x]+edge[i].Cost;
pre[edge[i].to]=i;
if (!used[edge[i].to])
{
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
used[x]=false;
}
return dis[e]!=INF;
} int MCMF(int s,int e)
{
int Fee=;
while (Spfa(s,e))
{
int d=INF;
for (int i=e; i!=s; i=edge[((pre[i]-)^)+].to)
d=min(d,edge[pre[i]].Flow);
for (int i=e; i!=s; i=edge[((pre[i]-)^)+].to)
{
edge[pre[i]].Flow-=d;
edge[((pre[i]-)^)+].Flow+=d;
}
Fee+=d*dis[e];
}
return Fee;
} int main()
{
memset(&INF,0x7f,sizeof(INF));
s=,e=;
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
{
scanf("%s",st);
for (int j=; j<=m; ++j)
{
if (st[j-]=='U') a[i][j]=;
if (st[j-]=='D') a[i][j]=;
if (st[j-]=='L') a[i][j]=;
if (st[j-]=='R') a[i][j]=;
add(s,id(i,j),,);
add(id(i,j),s,,);
add(id(i,j)+m*n,e,,);
add(e,id(i,j)+m*n,,);
}
}
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=; ++k)
{
int x=i+dx[k],y=j+dy[k];
if (x<) x=n;
if (x>n) x=;
if (y<) y=m;
if (y>m) y=;
add(id(i,j),id(x,y)+m*n,,(k!=a[i][j]));
add(id(x,y)+m*n,id(i,j),,-(k!=a[i][j]));
}
printf("%d",MCMF(s,e));
}
3171. [TJOI2013]循环格【费用流】的更多相关文章
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- [TJOI2013]循环格 费用流 BZOJ3171
题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...
- BZOJ 3171 [Tjoi2013]循环格(费用流)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题目大意] 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每 ...
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
- bzoj 3171: [Tjoi2013]循环格
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- bzoj 3171: [Tjoi2013]循环格 最小费用最大流
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3171 题解: 首先我们很容易发现一个结论: 出现完美循环当且仅当所有点的出入度均为1 所 ...
- bzoj 3171 [Tjoi2013]循环格(MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题意] 给定一个方向矩阵,要求改变最少的格子,使得任意一个点都在一个环中. [ ...
- BZOJ_3171_[Tjoi2013]循环格_最小费用最大流
BZOJ_3171_[Tjoi2013]循环格_最小费用最大流 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为 ...
- [Tjoi2013]循环格
[Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...
随机推荐
- 一、cent OS安装配置JDK
到oracle官网下载JDKhttp://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html 在cent OS ...
- 优化SQLServer
由于SQLServer,数据文件mdf过大,造成系统异常卡 一. 更改隔离级别 ALTER DATABASE [B2EC] SET SINGLE_USER WITH ROLLBACK IMMEDIAT ...
- groovy集合
groovy集合可以直接在语言中使用,因为它默认已经导入包了. 不需要初始化对象,也不需要专门的类. 集合是groovy语言本地成员.Groovy语法提供了本地列表和相应的映射. 每个Groovy集合 ...
- HDU 2544(简单最短路)
http://acm.hdu.edu.cn/showproblem.php?pid=2544 /* 使用pair代替结构 */ #include <iostream> #include & ...
- 第N次学习javaIO之后
io按流分 输入流.输出流 io按类型分(是类型吧) 字节流.字符流 ------------------------------------- 先说说一直以来混淆什么时候用输入流,什么时候用输出流. ...
- Spring入门(一)— IOC、DI
一.Spring介绍 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成 ...
- idea新建maven多模块spring boot项目
1.新建一个maven多模块项目,比如这种结构: maven-demo |--demo-common |--demo-order |--demo-user 2.先新建一个maven项目,在maven项 ...
- csharp:FlowLayoutPanel
/// <summary> /// 集合添加的控件 /// 涂聚文20150339 /// </summary> public void AddNewTextBox() { P ...
- UOJ#55. 【WC2014】紫荆花之恋
传送门 暴力思路就是每次点分治计算答案 点分治之后,条件可以变成 \(dis_i-r_i\le r_j-dis_j\) 每次只要查找 \(r_j-dis_j\) 的排名然后插入 \(dis_j-r_j ...
- Java设计模式—解释器模式&迭代器模式简介
解释器模式在实际的系统开发中使用得非常少,因为它会引起效率.性能以及维护等问题,一般在大中型的框架型项目能够找到它的身影,如一些数据分析工具.报表设计工具.科学计算工具等,若你确实遇到" ...