题目

发现我们需要最大化最小值,基本是二分了

那么我们二分出来一个值我们将小于等于这个值的都删去,现在的问题变成了如何用\(n+1\)条路径覆盖这张图

这不最小路径覆盖吗

于是我就忘了最小路径覆盖怎么搞了

在慎老师的教育下我终于知道了最小路径覆盖应该先将每个点拆成两个点,放在二分图的左右两边,对于原图的一条边\((x,y)\),我们就连\((x,y')\),之后最小路径覆盖就等于总点数减最大匹配

其实挺好理解的,先考虑一条匹配边都没有的情况,最小路径覆盖就是总点数,每加入一条匹配边就会让我们少用一次覆盖

代码

#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define LL long long
#define inf 999999999
#define re register
#define maxn 1005
inline int read() {
int x=0;char c=getchar();while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt,f;}e[maxn*maxn];
int n,num,m,S,T;
int head[maxn],cur[maxn],d[maxn],val[maxn],c[maxn];
std::vector<int> v[maxn];
inline void add(int x,int y,int w) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].f=w;}
inline void C(int x,int y,int w) {add(x,y,w),add(y,x,0);}
inline int BFS() {
std::queue<int> q;
for(re int i=S;i<=T;i++) cur[i]=head[i],d[i]=0;
d[S]=1,q.push(S);
while(!q.empty()) {
int k=q.front();q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(e[i].f&&!d[e[i].v]) d[e[i].v]=d[k]+1,q.push(e[i].v);
}
return d[T];
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;
for(re int& i=cur[x];i;i=e[i].nxt)
if(d[e[i].v]==d[x]+1) {
ff=dfs(e[i].v,min(e[i].f,now));
if(ff<=0) continue;
now-=ff,flow+=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
inline int check(int x) {
int tot=0;
memset(head,0,sizeof(head));num=1;
for(re int i=1;i<=m;i++) {
if(val[i]>=x) continue;
C(S,i,1);C(i+m,T,1);tot++;
for(re unsigned int j=0;j<v[i].size();j++)
if(val[v[i][j]]<x) C(i,v[i][j]+m,1);
}
int ans=tot;
while(BFS()) ans-=dfs(S,inf);
return ans<=n;
}
int main() {
n=read()+1,m=read();
for(re int i=1;i<=m;i++) {
val[i]=read(),num=read();
for(re int j=1;j<=num;j++) v[i].push_back(read());
}
S=0,T=m+m+1;
if(check(inf)) {puts("AK");return 0;}
for(re int i=1;i<=m;i++) c[i]=val[i];
std::sort(c+1,c+m+1);
int l=1,r=m,ans=0;
while(l<=r) {
int mid=l+r>>1;
if(check(c[mid])) l=mid+1,ans=mid;else r=mid-1;
}
printf("%d\n",c[ans]);
return 0;
}

[TJOI2018]智力竞赛的更多相关文章

  1. 【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)

    [BZOJ5335][TJOI2018]智力竞赛(二分图匹配) 题面 BZOJ 洛谷 题解 假装图不是一个DAG想了半天,.发现并不会做. 于是假装图是一个DAG. 那么显然就是二分答案,然后求一个最 ...

  2. BZOJ5335:[TJOI2018]智力竞赛——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5335 小豆报名参加智力竞赛,他带上了n个好朋友作为亲友团一块来参加比赛. 比赛规则如下: 一共有m ...

  3. BZOJ5335 : [TJOI2018]智力竞赛

    二分答案,转化成求最少的路径,覆盖住所有权值$\leq mid$的点. 建立二分图,若$i$的后继为$j$,则连边$i\rightarrow j$,求出最大匹配,则点数减去最大匹配数即为最少需要的路径 ...

  4. 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)

    题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...

  5. [TJOI2018]智力竞赛【网络流】

    题解: 这垃圾题意 问题二分之后等价于 可重复路径判断能否覆盖一张图 1.用floyd连边(来保证可重复) 然后拆点跑最大流 然后答案=n-最大流 但这样子做本来复杂度就比较高,边数增加了n倍 2.我 ...

  6. 洛谷P4589 [TJOI2018]智力竞赛 【floyd + 二分 + KM】

    题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DA ...

  7. 【洛谷P4589】[TJOI2018]智力竞赛(二分+最小链覆盖)

    洛谷 题意: 给出一个\(DAG\),现在要选出\(n+1\)条可相交的链来覆盖,最终使得未被覆盖的点集中,权值最小的点的权值最大. 思路: 显然最终的答案具有单调性,故直接二分答案来判断: 直接将小 ...

  8. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  9. [Offer收割]编程练习赛3 - 题目3 : 智力竞赛

    智力竞赛 Problem's Link ---------------------------------------------------------------------------- Mea ...

随机推荐

  1. jQuery基础---常规选择器

    内容摘要: 1.简单选择器 2.进阶选择器 3.高级选择器 发文不易,转载请注明出处! jQuery 最核心的组成部分就是:选择器引擎.它继承了 CSS 的语法,可以对 DOM 元素的标签名.属性名. ...

  2. .net core 导出excel

    1.使用NuGet 安装 EPPlus.Core, 2.代码如下 using OfficeOpenXml; using OfficeOpenXml.Style; public IActionResul ...

  3. Z_Tree的使用案例(出差地点的演示)

    1.准备工作(下载zTree并添加到项目JS中) 2.HTML代码 <link rel="stylesheet" href="./js/zTree_v3-3.5.2 ...

  4. sql语句优化总结

    sql语句优化总结 数据库优化的几个原则: 1.尽量避免在列上做运算,这样会导致索引失败: 2.使用join是应该用小结果集驱动大结果集,同时把复杂的join查询拆分成多个query.不然join的越 ...

  5. Bootstrap框架和inconfont、font-awesome使用

    iconfont的使用:https://www.cnblogs.com/clschao/articles/10387580.html Bootstrap介绍 Bootstrap是Twitter开源的基 ...

  6. bootstrap学习笔记细化(标题)

    bootstrap中的排版: 标题(h1~h6/.h1~.h6) h1:36px;h2:30px;h3:24px;h4:18px;h5:14px;h6:12px; 副标题(small) 小练习(标题大 ...

  7. c# 序列化接口(转载贴)

    http://www.cnblogs.com/TianFang/p/3724449.html

  8. Unity射线

    //射线原点 [SerializField] Transform tr; //射线长度    [SerializField] float dis = 5; //射线停留时间 [SerializFiel ...

  9. Newtonsoft.Json 动态解析 json字符串

    有一个json字符串是动态的,如下面,columns中的数量是不固定的,因此就不能使用反序列化类的方法了: 因此使用这样一种方式,把columns中的所有东西都输出出来: public void Ge ...

  10. Informatica 9.5安装部署

    Informatica  结构 1个或多个资源库(Respository) PowerCenter数据整合引擎是基于元数据驱动的,提供了基于数据驱动的元数据知识库(Repository),该元数据知识 ...