Description

给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小。

Input

先给出一个数字N,代表树上有N个点,N<=10000 下面N-1行,代表两个点相连

Output

最小的总权值

Sample Input

10
7 5
1 2
1 7
8 9
4 1
9 7
5 6
10 2
9 3

Sample Output

14

Solution

结论题。权值标号不会大于$log2(n)$。

Code

 #include<iostream>
#include<cstdio>
#include<cmath>
#define N (10009)
using namespace std; struct Edge{int to,next;}edge[N<<];
int n,u,v,f[N][],ans=1e9,LOG2,head[N],num_edge; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Dfs(int x,int fa)
{
for (int v1=; v1<=LOG2; ++v1) f[x][v1]=v1;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
Dfs(edge[i].to,x);
for (int v1=; v1<=LOG2; ++v1)
{
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
{
int minn=1e9;
for (int v2=; v2<=LOG2; ++v2)
if (v2!=v1) minn=min(minn,f[edge[i].to][v2]);
f[x][v1]+=minn;
}
}
} int main()
{
scanf("%d",&n);
LOG2=ceil(log10(1.0*n)/log10(2.0));
for (int i=; i<=n-; ++i)
scanf("%d%d",&u,&v), add(u,v), add(v,u);
Dfs(,);
for (int i=; i<=LOG2; ++i) ans=min(ans,f[][i]);
printf("%d\n",ans);
}

BZOJ1369:[Baltic2003]Gem(树形DP)的更多相关文章

  1. 【bzoj1369】[Baltic2003]Gem 树形dp

    题目描述 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. 输入 先给出一个数字N,代表树上有N ...

  2. 【BZOJ-1369】Gem 树形DP

    1369: [Baltic2003]Gem Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 282  Solved: 180[Submit][Status] ...

  3. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  4. BZOJ_1369_[Baltic2003]Gem_树形DP

    BZOJ_1369_[Baltic2003]Gem_树形DP Description 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值, ...

  5. BZOJ1369/LG4395 「BOI2003」Gem 树形DP

    问题描述 LG4395 BZOJ1369 题解 发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种. 于是套路树 ...

  6. [bzoj1369][Baltic2003]Gem_树形dp_结论题

    Gem bzoj-1369 Baltic-2003 题目大意:给你一棵树,让你往节点上添自然数,使得任意相邻节点的数不同且使得权值最小. 注释:n为结点个数,$1\le n\le 10^3$. 想法: ...

  7. bzoj 1369: Gem 树形dp

    题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ...

  8. [BOI2003] Gem - 树形dp

    结论 不同颜色数不会超过 \(O(\log n)\) 然后就是很简单的树形dp了 顺便复习一下树形dp怎么写 #include <bits/stdc++.h> using namespac ...

  9. [bzoj1369] [Baltic2003]Gem

    结论题...一棵树里用到的颜色数不超过logn.. f[i][j]表示以i为根的子树里,i的颜色是j的方案数. g[i][j]表示max{f[i][k]},(k!=j #include<cstd ...

随机推荐

  1. 【转】Windows 平台下 Go 语言的安装和环境变量设置

    1. Go 语言 SDK 安装包下载和安装 最新稳定版 1.5.3 安装包 go1.5.3.windows-amd64.msi下载地址 https://golang.org/dl/,大小约 69 MB ...

  2. Bash on windows从14.0升级到ubuntu16.04

    升级参考:https://www.zhihu.com/question/49411626 解决中文乱码问题参考:http://www.lofter.com/tag/ubuntu%E5%AD%90%E7 ...

  3. git远程易错点

    git pull下来用git branch -r查看远程分支才有数据 解决方案:指定当前工作目录工作分支,跟远程的仓库,分支之间的链接关系. 比如我们设置master对应远程仓库的master分支 g ...

  4. jquery获取哪一个下拉框被选中

    var val = $("select[name='type_irb'] option:selected").val();

  5. 自定义scoll样式

    使用伪类自定义scroll样式 效果: 代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8 ...

  6. csharp: Gets a files formatted size.

    /* ASP.NET 默认上传文件是4M ,可以修改服务配置.. <system.web> <!-- 指示 ASP.NET 支持的最大文件上载大小. 该限制可用于防止因用户将大量文件 ...

  7. Avalon探索之旅

    avalon2是一款基于虚拟DOM与属性劫持的 迷你. 易用. 高性能 的 前端MVVM框架, 拥有超优秀的兼容性, 支持移动开发, 后端渲染, WEB Component式组件开发, 无需编译, 开 ...

  8. centos 7.2 Apache+mysql+php step by step备忘

    1. 如何允许laravel程序执行sudo shell脚本? chmod u+w /etc/sudoers ; echo "apache ALL=(ALL) NOPASSWD:ALL&qu ...

  9. jQuery 插件封装的方法

    方式1.$.fn.xxx ==>针对元素添加方法: ;(function ($) { $.fn.m​​yPlugin = function () { //你自己的插件代码 }; })(jQuer ...

  10. js 三元表达式的写法

    句式一. if(a) do_a elseif(b) do_b else do_c 转化为: =>a ? do_a : b ?do_b : do_c 句式二. if(a) do_a 转化为: =& ...