Destroy Walls

  Long times ago, there are beautiful historic walls in the city. These walls divide the city into many parts of area.
  Since it was not convenient, the new king wants to destroy some of these walls, so he can arrive anywhere from his castle. We assume that his castle locates at (0.6∗2–√,0.6∗3–√).
  There are n towers in the city, which numbered from 1 to n. The ith's location is (xi,yi). Also, there are m walls connecting the towers. Specifically, the ith wall connects the tower ui and the tower vi(including the endpoint). The cost of destroying the ith wall is wi.
  Now the king asks you to help him to divide the city. Firstly, the king wants to destroy as less walls as possible, and in addition, he wants to make the cost least.
  The walls only intersect at the endpoint. It is guaranteed that no walls connects the same tower and no 2 walls connects the same pair of towers. Thait is to say, the given graph formed by the walls and towers doesn't contain any multiple edges or self-loops.
  Initially, you should tell the king how many walls he should destroy at least to achieve his goal, and the minimal cost under this condition.

Input
  There are several test cases.
  For each test case:
  The first line contains 2 integer n, m.
  Then next n lines describe the coordinates of the points.
  Each line contains 2 integers xi,yi.
  Then m lines follow, the ith line contains 3 integers ui,vi,wi
  |xi|,|yi|≤105
  3≤n≤100000,1≤m≤200000
  1≤ui,vi≤n,ui≠vi,0≤wi≤10000

Output
  For each test case outout one line with 2 integers sperate by a space, indicate how many walls the king should destroy at least to achieve his goal, and the minimal cost under this condition.

Sample Input

4 4
-1 -1
-1 1
1 1
1 -1
1 2 1
2 3 2
3 4 1
4 1 2

Sample Output

1 1

解题思路:
  首先,很重要的一点,本题给出的所有坐标值都没用,都是吓人的。

  本题的意思是有一个城堡,被数条城墙分隔为多个区域,城墙的端点只会是塔楼,并且城墙只在端点相交,一条城墙的两端不会连在同一个塔楼上(图没有自环),拆除每个城墙都会有一定消耗,国王希望通过最少的消耗,使城堡所有区域都连通。

  本题有多组测试用例,每组测试用例包括,塔楼数量(端点数量)n, 城墙数量(边数)m,首先跟随n行,每行包括两个整数x y为塔楼的坐标(没用),之后m行跟随,每行包括三个整数,分别为城墙连接的两个塔楼u , v,拆毁该城墙的消耗w。

  要求输出使所有区域连通所需的最少的消耗。

  仔细思考一下就会发现,本题的最终要求就是让我们把给定的图通过抹去边变成无环图,而且抹去边的权值要尽可能的小。而将平面图变成无环图叫什么?——生成树!!

  提到生成树,我们想到两个算法Prim算法与Kruskal算法,因为本题可以通过将边由大到小排序求的最大生成树,在这里我们使用Kruskal算法。

kruskal算法核心思想:  

  既然已经给出了邻接表。初始视所有塔楼都为不连通(即拆除所有城墙),之后将城墙按消耗排序,从大到小枚举所有城墙,判断城墙两端的塔楼是否已经连通,若已经连通不做处理(即该墙需要拆除)拆除的墙数加一,若不连通则将该边记录入最大生成树(该墙无需拆除),并从拆毁所有城墙的总消耗里减去该城墙的消耗。

bool cmp(edge a, edge b){   //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗

kruskal

判断是否连通使用并查集

int father[maxn];
int getFather(int x)
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }

并查集

AC代码

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 2e5+;
struct edge{ //edge储存城墙
int u, v; //城墙连接的两个结点
LL w; //拆除的消耗
}Edge[maxn];
int father[maxn];
int getFather(int x) //并查集部分
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }
bool cmp(edge a, edge b){ //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗
}
int main(){
int n, m;
while(scanf("%d%d", &n, &m) != EOF){ //输入塔楼数n与城墙数m
for(int i = ; i <= n; i++){
int x, y;
scanf("%d%d", &x, &y); //吸收掉这些没用的坐标
}
LL sum = ;
for(int i = ; i <= m; i++){ //输入邻接表
scanf("%d%d%lld", &Edge[i].u, &Edge[i].v, &Edge[i].w);
sum += Edge[i].w; //记录总权值(拆除所有城墙的消耗)
}
int cnt = ; //cnt记录需要拆除的城墙
LL ans = kruskal(n, m, sum, cnt); //得到最小消耗
printf("%d %lld\n",cnt, ans);
}
return ;
}

HDU 6187 Destroy Walls的更多相关文章

  1. HDU 6187 Destroy Walls (思维,最大生成树)

    HDU 6187 Destroy Walls (思维,最大生成树) Destroy Walls *Time Limit: 8000/4000 MS (Java/Others) Memory Limit ...

  2. HDU 6187 Destroy Walls (对偶图最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...

  3. HDU - 6187 (最大生成树) 最小生成树

    Destroy Walls Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  4. hdu 4940 Destroy Transportation system(水过)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...

  5. HDU 1692 Destroy the Well of Life 水题

    Destroy the Well of Life Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showprob ...

  6. hdu 4940 Destroy Transportation system (无源汇上下界可行流)

    Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  7. HDU 4940 Destroy Transportation system(无源汇有上下界最大流)

    看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...

  8. 最短路(数据处理):HDU 5817 Ice Walls

    Have you ever played DOTA? If so, you may know the hero, Invoker. As one of the few intelligence car ...

  9. HDU 4940 Destroy Transportation system(无源汇上下界网络流)

    Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...

随机推荐

  1. PostgreSQL查询数据(连接查询和子查询)

    原料 --用户表 create table "SysUser"( "UserId" serial, --用户Id,自增 "UserName" ...

  2. WPF显示Gif动画

    WPF的Image控件不能很好的支持.gif文件.解决办法有如下2种. 1使用MediaElement <MediaElement Source="file://D:\anim.gif ...

  3. 基于ASP.NET的MVC框架下的MvcPaper分页控件的使用技术

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using Webdiyer. ...

  4. 1、认识Redis

    Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库.Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库, ...

  5. POJ的练习题

    http://wenku.baidu.com/link?url=PT1gkBWC3eXuzzs0QqWklC0VNYkf5ynxBFguXPGYR22l1D2tXmQ4VjnsWvbFyvj1fqGi ...

  6. php函数源代码 C编写 【持续更新】

    由于经常被抓取文章内容,在此附上博客文章网址:,偶尔会更新某些出错的数据或文字,建议到我博客地址 :  --> 点击这里 strlen() 获取字符串长度,成功则返回字符串 string 的长度 ...

  7. java学习笔记—ServletConfig、ServletContext接口(13)

    ServletConfig是一个由Tomcat服务器在初始化Servlet的时候创建并传递进来的一个对象. 该对象主要描述的时候一个servlet的配置信息. 如: <servlet>  ...

  8. objectARX 关于MFC类向导 无法向此非CCmdTarget派生类添加任何命令 的解决方式

    objectARX 关于MFC类向导 无法向此非CCmdTarget派生类添加任何命令  的解决方式 图文By edata ,转载注明出处 http://www.cnblogs.com/edata 1 ...

  9. robot framework接口测试之一-完整的测试用例

    *** Settings *** Library Collections Library json Library requests Library RequestsLibrary Library H ...

  10. Centos搭建Groovy开发环境

    背景 临时接到需求,要帮兄弟团队跑一点线上的数据,据说很急.于是拿出了许久不用的Spring-Boot.可是,可是,死活启动有问题,心累了.其实一般写脚本就是在Boot用Groovy写好,然后放到线上 ...