HDU 6187 Destroy Walls
Destroy Walls
Long times ago, there are beautiful historic walls in the city. These walls divide the city into many parts of area.
Since it was not convenient, the new king wants to destroy some of these walls, so he can arrive anywhere from his castle. We assume that his castle locates at (0.6∗2–√,0.6∗3–√).
There are n towers in the city, which numbered from 1 to n. The ith's location is (xi,yi). Also, there are m walls connecting the towers. Specifically, the ith wall connects the tower ui and the tower vi(including the endpoint). The cost of destroying the ith wall is wi.
Now the king asks you to help him to divide the city. Firstly, the king wants to destroy as less walls as possible, and in addition, he wants to make the cost least.
The walls only intersect at the endpoint. It is guaranteed that no walls connects the same tower and no 2 walls connects the same pair of towers. Thait is to say, the given graph formed by the walls and towers doesn't contain any multiple edges or self-loops.
Initially, you should tell the king how many walls he should destroy at least to achieve his goal, and the minimal cost under this condition.
Input
There are several test cases.
For each test case:
The first line contains 2 integer n, m.
Then next n lines describe the coordinates of the points.
Each line contains 2 integers xi,yi.
Then m lines follow, the ith line contains 3 integers ui,vi,wi
|xi|,|yi|≤105
3≤n≤100000,1≤m≤200000
1≤ui,vi≤n,ui≠vi,0≤wi≤10000
Output
For each test case outout one line with 2 integers sperate by a space, indicate how many walls the king should destroy at least to achieve his goal, and the minimal cost under this condition.
Sample Input
4 4
-1 -1
-1 1
1 1
1 -1
1 2 1
2 3 2
3 4 1
4 1 2
Sample Output
1 1
解题思路:
首先,很重要的一点,本题给出的所有坐标值都没用,都是吓人的。
本题的意思是有一个城堡,被数条城墙分隔为多个区域,城墙的端点只会是塔楼,并且城墙只在端点相交,一条城墙的两端不会连在同一个塔楼上(图没有自环),拆除每个城墙都会有一定消耗,国王希望通过最少的消耗,使城堡所有区域都连通。
本题有多组测试用例,每组测试用例包括,塔楼数量(端点数量)n, 城墙数量(边数)m,首先跟随n行,每行包括两个整数x y为塔楼的坐标(没用),之后m行跟随,每行包括三个整数,分别为城墙连接的两个塔楼u , v,拆毁该城墙的消耗w。
要求输出使所有区域连通所需的最少的消耗。
仔细思考一下就会发现,本题的最终要求就是让我们把给定的图通过抹去边变成无环图,而且抹去边的权值要尽可能的小。而将平面图变成无环图叫什么?——生成树!!
提到生成树,我们想到两个算法Prim算法与Kruskal算法,因为本题可以通过将边由大到小排序求的最大生成树,在这里我们使用Kruskal算法。
kruskal算法核心思想:
既然已经给出了邻接表。初始视所有塔楼都为不连通(即拆除所有城墙),之后将城墙按消耗排序,从大到小枚举所有城墙,判断城墙两端的塔楼是否已经连通,若已经连通不做处理(即该墙需要拆除)拆除的墙数加一,若不连通则将该边记录入最大生成树(该墙无需拆除),并从拆毁所有城墙的总消耗里减去该城墙的消耗。
bool cmp(edge a, edge b){ //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗
kruskal
判断是否连通使用并查集
int father[maxn];
int getFather(int x)
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }
并查集
AC代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 2e5+;
struct edge{ //edge储存城墙
int u, v; //城墙连接的两个结点
LL w; //拆除的消耗
}Edge[maxn];
int father[maxn];
int getFather(int x) //并查集部分
{
if(father[x] == x)
return x;
else
return father[x] = getFather(father[x]); }
bool cmp(edge a, edge b){ //城墙排序为拆除消耗由大到小
return a.w > b.w;
}
LL kruskal(int n, int m, LL sum, int &cnt){ //kruskal算法
//由于需要改变cnt的值所以在这里cnt传引用
LL ans = sum; //传入的sum为拆除所有城墙所需的总消耗
for(int i = ; i <= n; i++){
father[i] = i; //初始化所有塔楼为不连通
}
sort(Edge + , Edge + + m, cmp); //城墙权值从大到小排序
for(int i = ; i <= m; i++){
int faNode1 = getFather(Edge[i].u);
int faNode2 = getFather(Edge[i].v);
if(faNode1 != faNode2){ //判断城墙连接的两个塔楼是否连通
father[faNode1] = faNode2; //不连通则标记为连通
ans -= Edge[i].w; //该城墙不需要拆数
}else{ //如果城墙两个端点塔楼已经连通则该城墙需要拆除
cnt++; //记录需要拆除的城墙数量
}
}
return ans; //返回的ans为拆除的最小消耗
}
int main(){
int n, m;
while(scanf("%d%d", &n, &m) != EOF){ //输入塔楼数n与城墙数m
for(int i = ; i <= n; i++){
int x, y;
scanf("%d%d", &x, &y); //吸收掉这些没用的坐标
}
LL sum = ;
for(int i = ; i <= m; i++){ //输入邻接表
scanf("%d%d%lld", &Edge[i].u, &Edge[i].v, &Edge[i].w);
sum += Edge[i].w; //记录总权值(拆除所有城墙的消耗)
}
int cnt = ; //cnt记录需要拆除的城墙
LL ans = kruskal(n, m, sum, cnt); //得到最小消耗
printf("%d %lld\n",cnt, ans);
}
return ;
}
HDU 6187 Destroy Walls的更多相关文章
- HDU 6187 Destroy Walls (思维,最大生成树)
HDU 6187 Destroy Walls (思维,最大生成树) Destroy Walls *Time Limit: 8000/4000 MS (Java/Others) Memory Limit ...
- HDU 6187 Destroy Walls (对偶图最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...
- HDU - 6187 (最大生成树) 最小生成树
Destroy Walls Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) ...
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- HDU 1692 Destroy the Well of Life 水题
Destroy the Well of Life Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showprob ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- 最短路(数据处理):HDU 5817 Ice Walls
Have you ever played DOTA? If so, you may know the hero, Invoker. As one of the few intelligence car ...
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
随机推荐
- SqlCmd -Windows Cluster Model
前提条件 1存储lun 划分完毕并且挂载到其中一台机器上 2 需要加入群集的节点机器加入域完毕,并设置好心跳线 .加域部分可以参考 之前 Sqler Cmd 加域部分. 1检查Feature 更新 S ...
- C#中的类
C#编程语言,从本质上讲是一组类型声明.所以,本人认为第一个要区分的点是:类型!=类. 当然,如果想要系统的学习C#还是应该先了解一下.Net框架,本文目的只是从相对宏观的角度讲清楚C#中的类.关于类 ...
- django drf django-filter的method过滤
1.View Demo from django.shortcuts import render from rest_framework.views import APIView from rest_f ...
- 2018 OCP 052最新题库及答案-4
4.For which requirement should you configure shared servers? A) accommodating an increasing number o ...
- spring指导的index.html在spring文件夹中的位置
- P5282 【模板】快速阶乘算法(多项式运算+拉格朗日插值+倍增)
题面 传送门 前置芝士 优化后的\(MTT\)(四次\(FFT\)) 题解 这里有多点求值的做法然而被\(shadowice\)巨巨吊起来打了一顿,所以来学一下倍增 成功同时拿到本题最优解和最劣解-- ...
- 洛谷P4069 [SDOI2016]游戏(李超线段树)
题面 传送门 题解 如果我们把路径拆成两段,那么这个路径加可以看成是一个一次函数 具体来说,设\(dis_u\)表示节点\(u\)到根节点的距离,那么\((x,lca)\)这条路径上每个节点的权值就会 ...
- Python Pymongo中Connection()与MongoClient()差异
在git找了几个blog的源码,在学习的过程中,发现有人使用Connection(),有人却在使用MongoClient(),那么到底两者有什么差别呢? 且看分析如下: db = Connection ...
- python3字典:获取json响应值来进行断言的用法详解
在Python中我们做接口经常用到一些json的返回值我们常把他转化为字典,在前面的python数据类型详解(全面)中已经谈到对字典的的一些操作,今天我们就获取json返回值之后,然后转化为字典后的获 ...
- GitHub创建项目,保存代码。
平时学习会写一些代码,虽然只是零零散散的功能,但是基本都是在一个项目下操作,偶尔会忘记代码编辑顺序.国庆这几天在家,想把GitHub用起来,实现自己代码的可追溯,可查询.学习本篇博客,你需要一点的Gi ...