1.定义:

$c[i][j]=\sum a[i][k]\times b[k][j]$

所以矩阵乘法有条件,(n*m)*(m*p)=n*p

即第一个矩阵的列数等于第二个矩阵的行数,否则没有意义。

2.结合律与分配率

矩阵乘法不一定任何时候都有交换律。因为交换后甚至不能保证第一个矩阵的列数等于第二个矩阵的行数。

但是,矩阵乘法有结合律。

A*B*C=A*(B*C)

这是一个最常用的运算律,使之可以用矩阵快速幂。

3.构造技巧。

矩阵乘法主要用途还是矩阵加速dp。

例如什么n=1e9之类的。

关键还是在于列出dp或者叫递推式子。

BY LYD:

1.一定是线性递推式(斐波那契数列)

2.总有一个转移矩阵(通常还是正方形)一直不变(才能快速幂)

3.矩阵边长不能太大,因为乘法复杂度是O(n^3)

4.矩阵保留能往下递推的项即可。

4.基础应用:

①斐波那契数列第1e9项。斐波那契数列

[TJOI2015]棋盘

矩阵乘法除了这样的优化dp/递推之外,还可以就矩阵乘法本身出一些题目。

以及一些以矩阵乘法为基础的构造

5.板板题——预处理+矩阵+定义新运算

[学习笔记]矩阵乘法及其优化dp的更多相关文章

  1. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  2. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  3. 学习笔记:四边形不等式优化 DP

    定义 & 等价形式 四边形不等式是定义在整数集上的二元函数 \(w(x, y)\). 定义:对于任意 \(a \le b \le c \le d\),满足交叉小于等于包含(即 \(w(a, c ...

  4. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  5. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  6. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  7. CUDA 矩阵乘法终极优化指南

    作者:马骏 | 旷视 MegEngine 架构师 前言 单精度矩阵乘法(SGEMM)几乎是每一位学习 CUDA 的同学绕不开的案例,这个经典的计算密集型案例可以很好地展示 GPU 编程中常用的优化技巧 ...

  8. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

  9. 蓝桥 ADV-232 算法提高 矩阵乘法 【区间DP】

      算法提高 矩阵乘法   时间限制:3.0s   内存限制:256.0MB      问题描述 有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要 ...

随机推荐

  1. selenium,unittest——下拉菜单操作,百度账号设置修改

    #encoding=utf-8from selenium import webdriverimport time,unittest, re,sysfrom HTMLTestRunner import ...

  2. idea项目 run、debug变灰色的问题

    点击如图所示位置的下来三角按钮,然后选择Edit Configurations,或者点击菜单栏Run>Edit Configurations 2 在运行配置窗口,选择一条springboot的运 ...

  3. Linux安装JDK8详细步骤

    1.下载jdk8 查看Linux位数,到oracle官网下载对应的jdk ① sudo uname --m  确认32位还是64位 ② https://www.oracle.com/technetwo ...

  4. Centos安装Python3(自带pip和setuptools)

    安装zlib相关依赖 解决zipimport.ZipImportError: can't decompress data和pip3 ssl证书问题 sudo yum -y install zlib* ...

  5. Centos7.2部署saltstack

    原文发表于cu:2016-06-23 参考文档: Saltstack安装文档:https://repo.saltstack.com/#rhel saltstack的安装与简单配置,应用. 一.环境 S ...

  6. Composer指南

    安装 windows中安装Composer 一般来说,windows下安装composer有两种办法,一种是直接下载并运行Composer-Setup.exe,这种方法在中国似乎很难完成安装.另一种就 ...

  7. 第五章—if语句

    5-1 条件测试 :编写一系列条件测试:将每个测试以及你对其结果的预测和实际结果都打印出来.你编写的代码应类似于下面这样: car = 'subaru' print("Is car == ' ...

  8. IBM基于Kubernetes的容器云全解析

    基于Kubernetes的容器云 容器云最主要的功能是以应用为中心,帮助用户把所有的应用以容器的形式在分布式里面跑起来,最后把应用以服务的形式呈现给用户.容器云里有两个关键点,一是容器编排,二是资源调 ...

  9. 标准版 Eclipse (Eclipse standard 4.3.3) 添加 Tomcat 支持

    步骤1:下载 Eclipse Tomcat 插件最新版:tomcatPluginV33.zip,官网下载最新版:http://www.eclipsetotale.com/tomcatPlugin.ht ...

  10. ECharts之force力导向布局图——数据源说明及后端API约定

    Echarts ? 关于 Echarts 请移步这里 force 力导向图 实现方式,如: function require_EC () { require( [ 'echarts', //载入for ...