1.定义:

$c[i][j]=\sum a[i][k]\times b[k][j]$

所以矩阵乘法有条件,(n*m)*(m*p)=n*p

即第一个矩阵的列数等于第二个矩阵的行数,否则没有意义。

2.结合律与分配率

矩阵乘法不一定任何时候都有交换律。因为交换后甚至不能保证第一个矩阵的列数等于第二个矩阵的行数。

但是,矩阵乘法有结合律。

A*B*C=A*(B*C)

这是一个最常用的运算律,使之可以用矩阵快速幂。

3.构造技巧。

矩阵乘法主要用途还是矩阵加速dp。

例如什么n=1e9之类的。

关键还是在于列出dp或者叫递推式子。

BY LYD:

1.一定是线性递推式(斐波那契数列)

2.总有一个转移矩阵(通常还是正方形)一直不变(才能快速幂)

3.矩阵边长不能太大,因为乘法复杂度是O(n^3)

4.矩阵保留能往下递推的项即可。

4.基础应用:

①斐波那契数列第1e9项。斐波那契数列

[TJOI2015]棋盘

矩阵乘法除了这样的优化dp/递推之外,还可以就矩阵乘法本身出一些题目。

以及一些以矩阵乘法为基础的构造

5.板板题——预处理+矩阵+定义新运算

[学习笔记]矩阵乘法及其优化dp的更多相关文章

  1. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  2. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  3. 学习笔记:四边形不等式优化 DP

    定义 & 等价形式 四边形不等式是定义在整数集上的二元函数 \(w(x, y)\). 定义:对于任意 \(a \le b \le c \le d\),满足交叉小于等于包含(即 \(w(a, c ...

  4. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  5. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  6. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  7. CUDA 矩阵乘法终极优化指南

    作者:马骏 | 旷视 MegEngine 架构师 前言 单精度矩阵乘法(SGEMM)几乎是每一位学习 CUDA 的同学绕不开的案例,这个经典的计算密集型案例可以很好地展示 GPU 编程中常用的优化技巧 ...

  8. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

  9. 蓝桥 ADV-232 算法提高 矩阵乘法 【区间DP】

      算法提高 矩阵乘法   时间限制:3.0s   内存限制:256.0MB      问题描述 有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要 ...

随机推荐

  1. 用原生JS实现的一个导航下拉菜单,下拉菜单的宽度与浏览器视口的宽度一样(js+html+css)

    这个导航下拉菜单需要实现的功能是:下拉菜单的宽度与浏览器视口的宽度一样宽:一级导航只有两项,当鼠标移到一级导航上的导航项时,相应的二级导航出现.在本案例中通过改变二级导航的高度来实现二级导航的显示和消 ...

  2. 一个IP可以登几个拼多多后台 拼多多如何推广营销

    想要在拼多多上开双店?担心一根网线会引起IP冲突?那么一根网线可以登几个拼多多后台呢?有数据显示,挂双店是没有问题的,甚至可以多开.那么解决了一根网线的事情,要怎么对自己的店铺进行营销推广呢?下面是小 ...

  3. 使用GitLab创建项目

  4. Django——多网页网站及网页互联

    在helloapp文件夹下添加名为templates的文件夹(此文件夹名称是固定的),并在其下添加html文件,文件内容根据自己网页想呈现的内容而定 在views文件内添加新的函数 在urls文件内添 ...

  5. JavaFX学习笔记——ControlsFX控件集学习——ToggleSwitch和BreadCrumbBar例子

    ToggleSwitch ToggleSwitch ts = new ToggleSwitch("开"); 效果 BreadCrumbBar BreadCrumbBar<St ...

  6. TPO-17 C2 Reschedule part-time job in campus dining hall

    TPO-17 C2 Reschedule part-time job in campus dining hall 第 1 段 1.Listen to a conversation between a ...

  7. PPM、PGM、PBM图像格式剖析

    今天突然需要用到PPM这个图像文件格式,之前没见过,在此记录一下. PPM.PGM.PBM这三个图像文件格式很少见,其实也不难,分别用于彩色图像.灰度图像.二值图像.这里以PPM格式为例. PPM格式 ...

  8. Python:迭代器的简单理解

    一.什么是迭代器 迭代,顾名思义就是重复做一些事很多次(就现在循环中做的那样).迭代器是实现了__next__()方法的对象(这个方法在调用时不需要任何参数),它是访问可迭代序列的一种方式,通常其从序 ...

  9. 【分层最短路】Joyride

    http://codeforces.com/gym/101873 C 多开一维状态记录时间,d[i][t] = 经过时间t走到节点i的最小花费 每一个状态分别向"原地等待"与&qu ...

  10. (三)MySQL终极篇

    1.索引 详细介绍:http://www.cnblogs.com/57rongjielong/p/8039452.html 索引是对数据库表中一个或多个列的值进行排序的结构.索引是经过某种算法优化过的 ...