【CodeChef】ForbiddenSum
Solution
场上想到了\(O(NM)\)的做法。。然而并没有什么用
首先考虑比较简单的一个问题,给定一个数组\(A\),问这些数不能凑成的最小的数是多少
有一个很简单的想法:显然\(0\)不管对于哪个数组来说都是可以表示的,所以接下来我们只用从\(1\)开始考虑,如果说我知道一个最大的\(x\),满足\([1,x]\)这个区间内的数都能被当前数组中的数表示出来,这个时候如果说新加入一个数\(a\),考虑\(x\)会有什么变化
会发现如果说\(a<=x+1\)的话,那么这个最大值会从\(x\)变成\(x+a\),构造一下就知道了:对于\([1,x]\)中的整数显然都可以被表示出来,而\([x+1,x+a]\)这个区间中的每一个数\(i\)都可由\((i-a)\)和\(a\)组成,而\((i-a)\in [1,x]\),所以成立;当\(a>x+1\)的话,就没有办法连上了
这样得出了整个数组的\(x\)之后,\(x+1\)就是答案了
所以我们可以得到一个\(O(NM)\)的做法,就是每个询问区间暴力扫一遍
由于要排序,这个算法看起来好像非常难优化,但实际上我们如果换一种角度来看这个算法的流程就比较好优化了:绕开排序这个瓶颈,放在整个无序的数组上面进行操作,注意到上面提及的\(x\)其实是这个数组中某些元素的和,所以这个\(x\)其实应该是一个\(sum\),我们每次在做的事情就是找到一个新的\(<=sum+1\)的元素,并且将它加进\(sum\)里面去,直到找不到新的元素为止,由于\(sum\)本身是递增的,所以无形中相当于从小到大考虑每个元素
注意到这个寻找新元素的过程并没有必要一个一个元素地找,实际上我们会发现,对于当前\(sum\)来说那些\(<=sum+1\)的新元素一定会在后面的操作中被加进来(因为\(sum\)只会越来越大),所以每次我们可以将当前\(<=sum+1\)的所有新元素全部加进来就好了
于是问题就转变成了一个求区间中某个范围内的数的和的问题,直接主席树动态开点一波(注意根本不需要离散化之类的(实际上也不能离散化== )。。因为。。动态开点。。所以点数还是\(nlogn\)级别的==)
至于时间复杂度:首先每次主席树查找是\(logn\)的,然后。。至于一次询问会查找几次呢。。实际上我们会发现每次\(sum\)都至少会变成原来的\(2\)倍,然后题目又说了总和\(<=10^9\),那么就是最坏\(log_2(10^9)\)次左右,问题不大(然而这个\(2\)倍。。打表发现==其实是因为每次只要还有新的值,至少都会加上一个\(sum+1\))
代码大概张这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+10,SEG=N*20;
int a[N],tmp[N];
int n,m;
namespace Seg{/*{{{*/
int ch[SEG][2],sz[SEG],rt[N],sum[SEG];
int n,tot;
void init(int _n){tot=0; ch[0][0]=ch[0][1]=0; rt[0]=0; sz[0]=sum[0]=0; n=_n;}
int newnode(int pre){
ch[++tot][0]=ch[pre][0]; ch[tot][1]=ch[pre][1]; sz[tot]=sz[pre]; sum[tot]=sum[pre];
return tot;
}
void pushup(int x){sz[x]=sz[ch[x][0]]+sz[ch[x][1]];sum[x]=sum[ch[x][0]]+sum[ch[x][1]];}
void _insert(int pre,int &x,int d,int lx,int rx){
x=newnode(pre);
if (lx==rx){++sz[x];sum[x]+=lx;return;}
int mid=lx+rx>>1;
if (d<=mid) _insert(ch[pre][0],ch[x][0],d,lx,mid);
else _insert(ch[pre][1],ch[x][1],d,mid+1,rx);
pushup(x);
}
void insert(int pre,int x,int d){_insert(rt[pre],rt[x],d,1,n);}
int _query(int L,int R,int l,int r,int lx,int rx){
if (!L&&!R) return 0;
if (l<=lx&&rx<=r) return sum[R]-sum[L];
int mid=lx+rx>>1,ret=0;
if (l<=mid) ret+=_query(ch[L][0],ch[R][0],l,r,lx,mid);
if (r>mid) ret+=_query(ch[L][1],ch[R][1],l,r,mid+1,rx);
return ret;
}
int query(int L,int R,int l,int r){return _query(rt[L-1],rt[R],l,r,1,n);}
}/*}}}*/
void solve(int l,int r){
int sum=0,tmp,pre=0;
while (1){
tmp=Seg::query(l,r,1,sum+1);
if (tmp==pre){
printf("%d\n",sum+1);
return;
}
sum=tmp; pre=tmp;
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int l,r,mx=0;
scanf("%d",&n);
for (int i=1;i<=n;++i){
scanf("%d",a+i);
mx=max(mx,a[i]);
}
Seg::init(mx);
for (int i=1;i<=n;++i)
Seg::insert(i-1,i,a[i]);
scanf("%d",&m);
for (int i=1;i<=m;++i){
scanf("%d%d",&l,&r);
solve(l,r);
}
}
【CodeChef】ForbiddenSum的更多相关文章
- 【CodeChef】Querying on a Grid(分治,最短路)
[CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...
- 【CodeChef】Palindromeness(回文树)
[CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...
- 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)
[CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...
- 【CODECHEF】【phollard rho + miller_rabin】The First Cube
All submissions for this problem are available. Read problems statements in Mandarin Chinese and Rus ...
- 【codechef】FN/Fibonacci Number
题意 给出 c 和 P ,求最小的非负整数 n 使得 \(Fib(n)=c(mod~ P)\) 其中 P 是质数且 模 10 等于一个完全平方数(也就是说 P 的末位是个完全平方数,那么只能是 1 或 ...
- 【CodeChef】Prime Distance On Tree
vjudge 给定一棵边长都是\(1\)的树,求有多少条路径长度为质数 树上路径自然是点分治去搞,但是发现要求是长度为质数,总不能对每一个质数都判断一遍吧 自然是不行的,这个东西显然是一个卷积,我们合 ...
- 【Codechef】Chef and Bike(二维多项式插值)
something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...
- 【Codechef】BB-Billboards
题解 传说中的--半标准杨表(行单调不增,列单调减) 如果N能整除M,我们把序列分成\(\frac{N}{M}\)段 然后里面要填K个1,显然我每一段必须填K个1,且可以构造出合法的序列,所以最少要填 ...
- 【CodeChef】QTREE- Queries on tree again!
题解 给你一棵基环树,环长为奇数(两点间最短路径只有一条) 维护两点间路径最大子段和,支持把一条路径上的值取反 显然只要断开一条边维护树上的值,然后对于那条边分类讨论就好了 维护树上的值可以通过树链剖 ...
随机推荐
- katalon系列十四:执行Windows命令&获取项目路径
Katalon Studio中也可以运行Windows命令执行一些系统操作. 根据官方文档,在test case中输入命令:cmd = 'del E:\\shot\\*.xlsx E:\\shot\\ ...
- 利用xlsxwriter生成数据报表
#!/usr/bin/env python# -*- coding:utf-8 -*-import os,xlsxwriter,datetimeimport ConfigParserfrom send ...
- hadoop之Shuffle和Sort
MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的 ...
- loadrunner--基础2
LR11-03 一.并发测试(n VU) 1.并发测试两个条件 1)脚本中要有 集合点(并发点) 2)控制台中要设置并发策略(选择第一项,所有虚拟用户到达集合点后释放) 集合点: 5个线程,代表5个V ...
- Scrum立会报告+燃尽图(十月十九日总第十次):
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...
- Scrum立会报告+燃尽图(Beta阶段第五次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2387 项目地址:https://coding.net/u/wuyy694 ...
- Android 中的广播机制
Android 中的广播机制 Android 中的广播,按照广播响应范围,可以分为应用内广播和全局广播.按照广播的接收方式,可以分为标准广播和有序广播. 广播的分类 响应范围 应用内广播:此类广播只能 ...
- 汉诺塔python实现
下载汉诺塔ppt def move(n,A,B,C): if n == 1: print(A,'->',C) else: move(n-1,A,C,B) print(A,'->',C) m ...
- c# 调用c++dll二次总结
1.pinvoke结构不对称,添加语句(网上有) 2.含回调函数,成员参数的结构体必须完全,尽管自己用不到. 3.加深对c++指针的理解.一般情况下,类型加*等效于c++中的ref.但对于short* ...
- FPGA论文
基于 NetFPGA 的 VCP 网络的设计与实现 --可变结构拥塞控制协议(VCP),适应于高带宽时延乘积网络的显式拥塞控制协议 无源光网络(PON) 1.区块链技术发展,物联网设备激增,服务器压力 ...