第七章 链接

链接(linking)是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储并执行。链接可以执行于编译时(compile time),也就是在源代码被翻译成机器代码时;也可以执行于加载时(load time),也就是在程序被加载器(loader)加载到存储器并执行时;甚至执行于运行时(run time),由应用程序来执行。

  • 理解链接器将帮助你构造大型程序。
  • 理解链接器将帮助你避免一些危险的编程错误。
  • 理解链接将帮助你理解语言的作用域规则是如何实现的。
  • 理解链接将帮助你理解其他重要的系统概念。
  • 理解链接将使你能够利用共享库。

7.1编译器驱动程序

大多数编译系统提供编译驱动程序,它代表用户在需要时调用语言预处理器、编译器、汇编器和链接器。

7.2静态链接

Unix的静态链接器(static linker)ld,以一组可重位目标文件和命令行参数作为输入,生成一个完全链接的可以加载和运行的可执行目标文件作为输出。输入的可重定位目标文件由各种不同的代码和数据节(section)组成。指令在一个节中,初始化的全局变量在另一个节中,而未初始化的变量又在另外一个节中。

为了构造可执行文件,链接器必须完成两个主要任务:

  • 符号解析(symbol resolution)。目标文件定义和引用符号。符号解析的目的是将每个符号引用刚好和一个符号定义联系起来。
  • 重定位(relocation)。编译器和汇编器生成从地址0开始的代码和数据节。链接器通过把每个符号定义与一个存储器位置联系起来,然后修改所有对这些符号的引用,使得它们指向这个存储器位置,从而重定位这些节。

7.3目标文件

目标文件有三种形式:

  • 可重定位目标文件。包含二进制代码和数据,其形式可以在编译时与其他可重定位目标文件合并起来,创建一个可执行目标文件。
  • 可执行目标文件。包含二进制代码和数据,其形式可以被直接拷贝到存储器并执行。
  • 共享目标文件。一种特殊类型的可重定位目标文件,可以在加载或者运行地被动态地加载到存储器并链接。

编译器和汇编器生成可重定位目标文件(包括共享目标文件)。链接器生成可执行目标文件。从技术上来说,一个目标模块(object module)就是一个字节序列,而一个目标文件(object file)就是一个存放在磁盘文件中的目标模块。

7.4可重定位目标文件

一个典型的ELF可重定位目标文件的格式:

  • .text:已编译程序的机器代码。
  • .rodata:只读数据,比如printf语句中的格式串和开关语句的跳转表。
  • .data:已初始化的全局C变量。
  • .bss:未初始化的全局C变量。在目标文件中这个节不占据实际的空间,它仅仅是一个占位符。
  • .symtab:一个符号表,它存放在程序中定义和引用的函数和全局变量的信息。
  • .rel.text:一个.text节中位置的列表,当链接器把这个目标文件和其他文件结合时,需要修改这些位置。
  • .rel.data:被模块引用或定义的任何全局变量的重定位信息。
  • .debug:一个调试符号表,其条目是程序中定义的局部变量和类型定义,程序中定义和引用的全局变量,以及原始的C源文件。只有以-g选项调用编译驱动程序时才会得到这张表。
  • .line:原始C源程序中的行号和.text节中机器指令之间的映射。
  • .strtab:一个字符串表,其内容包括:.symtab和.debug节中的符号表,以及节头部中的节名字。字符串表就是以null结尾的字符串序列。

7.5符号和符号表

每个可重定位目标模块m都有一个符号表,它包含m所定义和引用的符号的信息。在链接器的上下文中,有三种不同的符号:

  • 由m定义并能被其他模块引用的全局符号。全局链接器符号对应于非静态的C函数以及被定义为不带C static属性的全局变量。
  • 由其他模块定义并被模块m引用的全局符号。这些符号称为外部符号(external),对应于定义在其他模块中的C函数和变量。
  • 只被模块m定义和引用的本地符号。有的本地链接器符号对应于带static属性的C函数和全局变量。

7.6符号解析

链接器解析符号引用的方法是将每个引用与它输入的可重定位目标文件的符号表中的一个确定的符号定义联系起来。

7.6.1链接如何解析多重定义的全局符号

在编译时,编译器向汇编器输出每个全局符号,或者是强或者弱的符号,而汇编器会把这个信息隐含地编码在可重定位目标文件的符号表里。函数和已初始化的全局变量是强符号,未初始化的全局变量是弱符号。

根据强弱符号的定义,Unix链接器使用下面的规则来处理多重定义的符号:

  • 规则1:不允许有多个强符号。
  • 规则2:如果有一个强符号和多个弱符号,那么选择强符号。
  • 规则3:如果有多个弱符号,那么从这些弱符号中任意选择一个。

7.6.2与静态库链接

所有的编译系统都提供一种机制,将所有相关的目标模块打包成为一个单独的文件,称为静态库(static library),它可以用做链接器的输入。当链接器构造一个输出的可执行文件时,它只拷贝静态库里被应用程序引用的目标模块。

在Unxi系统中,静态库以一种称为存档(archive)的特殊文件格式存放在磁盘中。存档文件是一组连接起来的可重定位目标文件的集合,有一个头部用来描述每个成员目标文件的大小和位置。存档文件名由后缀.a标识。

-static参数告诉编译器驱动程序,链接器应该构建一个完全链接的可执行目标文件,它可以加载到存储器并执行,在加载时无需更进一步的链接。

7.6.3链接器如何使用静态库来解析引用

在符号解析的阶段,链接器从左到右按照它们在编译器驱动程序命令行上出现的相同顺序来扫描可重定位目标文件和存档文件。(驱动程序自动将命令行中所有的.c文件翻译为.o文件。)在这次扫描中,链接器维持一个可重定位目标文件的集合E(这个集合中的文件会被合并起来形成可执行文件),一个未解析的符号(即引用了但是尚未定义的符号)集合U,以及一个在前面输入文件中已定义的符号集合D。初始时U和D都是空的。

  • 对于命令行上的每个输入文件f,链接器会判断f是一个目标文件还是一个存档文件。如果f是一个目标文件,那么链接器把f添加到E,修改U和D来反映f中的符号定义和引用,并继续下一个输入文件。
  • 如果f是一个存档文件,那么链接器就尝试匹配U中未解析的符号和由存档文件成员定义的符号。如果某个存档文件成员m,定义了一个符号来解析U中的一个引用,那么就将m加到E中,并且链接器修改U和D来反映m中的符号定义和引用。对存档文件中所有的成员目标文件都反复进行这个过程,直到U和D都不再发生变化。在此时,任何不包含在E中的成员目标文件都简单地被丢弃,而链接器将继续处理下一个输入文件。
  • 如果当链接器完成对命令行上输入文件的扫描后,U是非空的,那么链接器就会输出一个错误并终止。否则,它会合并和重定位E中的目标文件,从而构建输出的可执行文件。

因此命令行上的库和目标文件的顺序非常重要。在命令行中,如果定义一个符号的库出现在引用这个符号的目标文件之前,那么引用就不能解析,链接会失败。

关于库的一般准则是将它们放在命令行的结尾。如果各个库的成员是相互独立(也就是说没有成员引用另一个成员定义的符号),那么这些库就可以按照任何顺序放置在命令行的结尾处。另一方面,如果库不是相互独立的,那么它们必须排序,使得对于每个被存档文件的成员外部引用的符号s,在命令行中至少有一个s的定义是在对s的引用之后的。

7.7重定位

重定位由两步组成:

  • 重定位节和符号定义。在这一步中,链接器将所有相同类型的节合并为同一类型的新的聚合节。
  • 重定位节中的符号引用。在这一步中,链接器修改代码节和数据节中对每个符号的引用,使得它们指向正确的运行时地址。

7.7.1重定位条目

无论何时汇编器调到对最终位置未知的目标引用,它就会生成一个重定位条目,告诉链接器在将目标文件合并成可执行文件时如何修改这个引用。

  • R_386_pc32:重定位一个使用32位PC相对地址的引用。
  • R_386_32:重定位一个使用32位绝对地址的引用。

7.7.2重定位符号引用

  • 1.重定位PC相对引用
  • 2.重定位绝对引用

7.8可执行目标文件

我们的C程序,开始时是一组ASCII文本文件,已经被转化为一个二进制文件,且这个二进制文件包含加载程序到存储器并运行它所需的所有信息。

.init节定义了一个小函数,叫做_init,程序的初始化代码会调用它。因为可执行文件是完全链接的(已被重定位了),所以它不再需要.rel节。

7.9加载可执行目标文件

加载器将可执行目标文件中的执行代码和数据从磁盘拷贝到存储器中,然后通过跳转到程序的第一条指令或入口点(entry point)来运行该程序。这个将程序拷贝到存储器并运行的过程叫做加载(loading)。

Lunix程序运行时存储器映像:

在32位Linux系统中,代码段总是从地址0x08048000处开始。数据段是在接下来的下一个4KB对齐的地址处。运行时堆在读/写段之后接下来的第一个4KB对齐的地址处,并通过调用malloc库往上增长。还有一个段是为共享库保留的。用户栈总是最大的合法用户地址开始,向下增长的(向低存储器地址方向增长)。从栈的上部开始的段是为操作系统驻留存储器的部分(也就是内核)的代码和数据保留的。

当加载器运行时,它创建如上图所示的存储器映像。在可执行文件中段头部表的指导下,加载器将可执行文件的相关内容拷贝到代码和数据段。接下来,加载器跳转到程序的入口点,也就是符号_start的地址。在_start地址处的启动代码(startup code)是在目标文件ctrl.o中定义的,对所有的C程序都是一样的。

[cpp] view plain copy
1./*每个C程序中启动例程crtl.o的伪代码*/  
2.0x080480c0 <_start> : /*Entry point in .text*/  
3.    call __libc_init_first /*Startup code in .text*/  
4.    call _init             /*Startup code in .init*/  
5.    call atexit           /*Startup code in .text*/  
6.    call main           /*Application main routine*/  
7.    call _exit          /*Returns control to OS*/  
8.    /*Control never reaches here*/  

7.10动态链接共享库

静态库仍有一些明显的缺点:如果应用程序员想要使用一个库的最新版本,他们必须以某种方式了解到该库的更新情况,然后显式地将他们的程序与更新了的库重新链接。另一个问题是由于使用静态库的程序在链接时都会拷贝静态库里被应用程序引用的目标模块,像printf和scanf这样的函数的代码在运行时都会被复制到每个运行进程的文本段中,这造成了冗余,浪费了稀缺的存储器资源。

共享库是一个目标模块,在运行时,可以加载到任意的存储器地址,并和一个在存储器中的程序链接起来。这个过程称为动态链接(dynamic linking),是由一个叫做动态链接器(dynamic linker)的程序来执行的。

共享库也称为共享目标(share object),在Unix系统中通常用.so后缀来表示。微软的操作系统大量地利用了共享库,它们称为DLL(动态链接库)。

共享库是以两种不同的方式来“共享”的。首先,在任何给定的文件系统中,对于一个库只有一个.so文件。所有引用该库的可执行目标文件共享这个.so文件中的代码和数据,而不是像静态库的内容那样被拷贝和嵌入引用它们的可执行的文件中。其次,在存储器中,一个共享库的.text节的一个副本可以被不同的正在运行的进程共享。

其基本的思路是当创建可执行文件时,静态执行一些链接,然后在程序加载时,动态完成链接过程。

7.11从应用程序中加载和链接共享库

我们已经讨论了在应用程序执行之前,即应用程序被加载时,动态链接器加载和链接共享库的情景。然而,应用程序还可能在它运行时要求动态链接器加载和链接任意共享库,而无需在编译时链接那些库到应用中。

其中几个关键函数:

[cpp] view plain copy
1.#include<dlfcn.h>  
2.//返回:若成功则为指向句柄的指针,若出错则为NULL  
3.void *dlopen(const char *filename,int flag) ;  
4.  
5.//返回:若成功则为指向符号的指针,若出错则为NULL   
6.void *dlsym(void *handle,char *symbol) ;  
7.  
8.//返回:若成功则为0,若出错则为-1  
9.int dlclose(void *handle) ;  
10.  
11.//返回:如果前面对dlopen、dlsym或dlclose的调用失败,则为错误消息,如果前面的调用成功,则为NULL  
12.const char *dlerror(void) ;  

7.12与位置无关的代码

一种更好的方法是编译库代码,使得不需要链接器修改库代码就可以在任何地址加载和执行这些代码。这样的代码叫做与位置无关代码。用户对GCC使用—fPIC选项指示GNU编译生成PIC代码。

7.13处理目标文件的工具

  • AR:创建静态库,插入、删除、列出和提取成员。
  • STRINGS:列出一个目标文件中所有可打印的字符串。
  • STRIP:从目标文件中删除符号的信息。
  • NM:列出一个目标文件的符号表中定义的符号。
  • SIZE:目标文件中节的名字和大小。
  • READELF:显示一个目标文件的完整结构,包括ELF头中的编码的所有信息。包含SIZE和NM的功能。
  • OBJDUMP:所有二进制工具之母,能够显示一个目标文件中所有的信息。它最大的作用是反汇编.text节中的二进制指令。
  • LDD:列出一个可执行文件在运行时所需要的共享库。

linux内核设计与实现第七周读书笔记的更多相关文章

  1. LINUX内核设计与实现第三周读书笔记

    LINUX内核设计与实现第三周读书笔记 第一章 LINUX内核简介 1.1 Unix的历史 1969年的夏天,贝尔实验室的程序员们在一台PDR-7型机上实现了Unix这个全新的操作系统. 1973年, ...

  2. Linux内核设计与实现第十周读书笔记

    第十七章 设备与模块 关于设备驱动与设备管理,我们讨论四种内核成分. 设备类型 模块 内核对象 sysfs 17.1设备类型 在Linux以及所有Unix系统中,设备被分为以下三种类型: 块设备,块设 ...

  3. Linux内核设计与实现第八周读书笔记

    第四章 进程调度 进程在操作系统看来是程序的运行态表现形式. 4.1多任务 多任务操作系统就是能同时并发地交互执行多个进程的操作系统. 多任务操作系统会使多个进程处于堵塞或者睡眠状态.这些任务尽管位于 ...

  4. Linux内核设计与实现第五周读书笔记

    第十八章 调试 18.1准备开始 需要的只是: 一个确定的bug.大部分bug通常都不是行为可靠而且定义明确的. 一个藏匿bug的内核版本. 相关的内核代码的知识和运气. 18.2内核中的bug 内核 ...

  5. Linux内核设计与实现第六周读书笔记

    第三章 进程管理 3.1 进程 进程是处于执行期的代码.通常进程还要包含其他资源,像打开的文件.挂起的信号.内核的内部数据.处理器状态.一个或多个具有内存映射的内存地址空间及一个或多个执行线程,当然还 ...

  6. 《Linux内核设计与实现》Chapter 5 读书笔记

    <Linux内核设计与实现>Chapter 5 读书笔记 在现代操作系统中,内核提供了用户进程与内核进行交互的一组接口,这些接口的作用是: 使应用程序受限地访问硬件设备 提供创建新进程与已 ...

  7. 《Linux内核设计与实现》Chapter 18 读书笔记

    <Linux内核设计与实现>Chapter 18 读书笔记 一.准备开始 一个bug 一个藏匿bug的内核版本 知道这个bug最早出现在哪个内核版本中. 相关内核代码的知识和运气 想要成功 ...

  8. 《Linux内核设计与实现》Chapter 3 读书笔记

    <Linux内核设计与实现>Chapter 3 读书笔记 进程管理是所有操作系统的心脏所在. 一.进程 1.进程就是处于执行期的程序以及它所包含的资源的总称. 2.线程是在进程中活动的对象 ...

  9. 《Linux内核设计与实现》第四周读书笔记——第五章

    <Linux内核设计与实现>第四周读书笔记--第五章 20135301张忻 估算学习时间:共1.5小时 读书:1.0 代码:0 作业:0 博客:0.5 实际学习时间:共2.0小时 读书:1 ...

随机推荐

  1. Qt 将字符串转成16进制显示

    最近项目用到了需要将字符串转换成16进制显示.这玩意折腾了一上午. 首先,数据块内容 struct UserData { char Head[3] = {'X','J','J'}; char Flag ...

  2. leetcode-下一个排列

    下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...

  3. win7下配置spark

    1.安装jdk(配置JAVA_HOME,CLASSPATH,path) 2.安装scala(配置SCALA_HOME,path) 3.安装spark Spark的安装非常简单,直接去Download ...

  4. Atom 插件 Sync Settings 备份与恢复

    当使用 Atom IDEA.随着使用的越来越多,安装的插件也越来越多,一旦电脑重装后需要复原开发环境,这将是一件比较头疼的事.「Sync Settings」插件可以帮助我们解决这个问题. 操作流程 安 ...

  5. 【python 3.6】python读取json数据存入MySQL(一)

    整体思路: 1,读取json文件 2,将数据格式化为dict,取出key,创建数据库表头 3,取出dict的value,组装成sql语句,循环执行 4,执行SQL语句 #python 3.6 # -* ...

  6. 广东ACM省赛 E题

    题意: 输入一个P 使得存在一个一个N大于等于P, 并且存在m 等于 m/n * (m-1)/(n-1)=1/2. 思路 此题可以利用佩尔方程求解, 也可以打表解决.本次我解决利用的是佩尔方程(其实也 ...

  7. 十大经典排序算法总结 (Python)

    作业部落:https://www.zybuluo.com/listenviolet/note/1399285 以上链接是自己在作业部落编辑的排序算法总结- Github: https://github ...

  8. leetcode个人题解——#36 valid Sudoku

    思路题目里已经给出来了,判断是否是一个有效数独,只需满足以下三个条件: 1.同行元素不重复且1-9都有: 2.同列元素不重复且1-9都有: 3.每个粗线分隔的3*3的小九宫格元素不重复且1-9都有. ...

  9. mongodb redis memcache 对比

    从以下几个维度,对 Redis.memcache.MongoDB 做了对比. 1.性能 都比较高,性能对我们来说应该都不是瓶颈. 总体来讲,TPS 方面 redis 和 memcache 差不多,要大 ...

  10. JavaScript变态题目

    刚才发现的一些变态的 JavaScript 题目,做了一下,只对了一半,特此发到园子里,和友友们分享一下.这些题目都是针对 Ecmascript 第三版的,原题里面全部都是选择题,有备选答案,这里我把 ...