用Python实现求Fibonacci数列的第n项
1. 背景——Fabonacci数列的介绍(摘自百度百科):
斐波那契数列(Fibonacci sequence),又称黄金分割数列。因数学家列昂纳多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……用公式定义如下:
计算通式为:
当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618
2. 用Python迭代实现求解Fibonacci数列的第n项
def fib_iter(n):
n1 = 1
n2 = 1
n3 = 1 if (n < 1):
print("Wrong input! ")
return -1
else:
while (n-2) > 0:
n3 = n2 + n1
n1 = n2
n2 = n3
n -= 1 return n3 result = fib_iter(35)
if result != -1:
print(result)
优点:当n数值较大时,求解速度较递归法快
缺点:代码不简洁易懂
3. 用Python递归实现求解Fibonacci数列的第n项
def fib_re(n):
result = 0
if(n < 1):
print("Wrong input! ")
return -1
else:
if(n == 1 or n == 2):
return 1
else:
return fib_re(n-1) + fib_re(n-2) result = fib_re(35)
if result != -1:
print(result) #分治思想
优点:代码简洁易懂
缺点:当n数值较大时,反复的出栈和压栈操作使得运行时间很长
用Python实现求Fibonacci数列的第n项的更多相关文章
- 【编程题目】题目:定义 Fibonacci 数列 输入 n,用最快的方法求该数列的第 n 项。
第 19 题(数组.递归):题目:定义 Fibonacci 数列如下:/ 0 n=0f(n)= 1 n=1/ f(n-1)+f(n-2) n=2输入 n,用最快的方法求该数列的第 n 项. 思路:递归 ...
- 用PL0语言求Fibonacci数列前m个中偶数位的数
程序说明:求Fibonacci数列前m个中偶数位的数: 这是编译原理作业,本打算写 求Fibonacci数列前m个数:写了半天,不会写,就放弃了: 程序代码如下: var n1,n2,m,i; pro ...
- 程序员面试题精选100题(16)-O(logn)求Fibonacci数列[算法]
作者:何海涛 出处:http://zhedahht.blog.163.com/ 题目:定义Fibonacci数列如下: / 0 n=0 f(n)= ...
- 《面试题精选》15.O(logn)求Fibonacci数列
题目:定义Fibonacci数列例如以下: / 0 n=0 f(n)= 1 n=1 ...
- C++项目參考解答:求Fibonacci数列
[项目:求Fibonacci数列] Fibonacci数列在计算科学.经济学等领域中广泛使用,其特点是:第一.二个数是1,从第3个数開始,每一个数是其前两个数之和.据此,这个数列为:1 1 2 3 5 ...
- 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据
/*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...
- 求Fibonacci数列通项公式
0. Intro \[f_n=\begin{cases} 0 & (n=0) \\ 1 & (n=1) \\ f_{n-1}+f_{n-2} & (n>1) \end{c ...
- 用Python输出一个Fibonacci数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列” 用文字来说, ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
随机推荐
- 20155217 《Java程序设计》第三次实验报告
20155217 <Java程序设计>第三次实验报告 实验内容 XP基础 XP核心实践 相关工具 实验要求 没有Linux基础的同学建议先学习<Linux基础入门(新版)>&l ...
- 20155319《Java程序设计》实验三(敏捷开发与XP实践)实验报告
20155319<Java程序设计>实验三(敏捷开发与XP实践)实验报告 一.实验内容及步骤 (一)使用Code菜单 在IDEA中使用工具(Code->Reformate Code) ...
- Oracle的物理存储与逻辑存储关系对应
逻辑结构: TableSapce 由 多个 Segment组成 Sgement 由多个 Extent 组成 Extent 由 多个数据块组成 物理结构: 一个Tablespace 可以包括多个数据文件 ...
- 没有执行过rm -rf /*的开发不是好运维
没有执行过rm -rf /*的开发不是好运维 起因 突然收到用户反馈说网站在手机端打开是白屏, 很奇怪的问题. 在电脑端试了下,确实也是白屏,HTML加载进来了,好像有个核心JS加载失败. 看到一个错 ...
- directive 指令一
什么是Directive Directive将一段html,js封装在一起,形成一个可以复用的独立个体,具有特定的功能.angularjs中的指令通常是比较小的组件,它相当于是给我们提供了一些公共的自 ...
- 八月暑期福利,10本Python热门书籍免费送!
八月第一周,网易云社区联合博文视点为大家带来Python专场送书福利,10本关于Python的书籍内容涉及Python入门.绝技.开发.数据分析.深度学习.量化投资等.以下为书籍简介,送书福利请见文末 ...
- Maven学习(十三)-----Maven 构建生命周期
Maven 构建生命周期 构建生命周期是什么? 构建生命周期阶段的目标是执行顺序是一个良好定义的序列. 这里使用一个例子,一个典型的 Maven 构建生命周期是由下列顺序的阶段: 阶段 处理 描述 准 ...
- 利用PreparedStatement预防SQL注入
1.什么是sql注入 SQL 注入是用户利用某些系统没有对输入数据进行充分的检查,从而进行恶意破坏的行为. 例如登录用户名采用 ' or 1=1 or username=‘,后台数据查询语句就变成 ...
- Linux的常用命令笔记
这里使用的是centos操作系统 一.简单命令 (1)查看历史纪录: history (2)查看当前目录: pwd (3)查看系统当前时间和日期 date (4)查看当前登陆到系统的所有用户 who ...
- Unity Lighting - Light Probes 光照探针(十)
Light Probes 光照探针 Only static objects are considered by Unity’s Baked or Precomputed Realtime GI s ...