DStream

1.1基本说明

1.1.1 Duration

Spark Streaming的时间类型,单位是毫秒;

生成方式如下:

1)new Duration(milli seconds)

输入毫秒数值来生成;

2)seconds(seconds)

输入秒数值来生成;

3)Minutes(minutes)

输入分钟数值来生成;

1.1.2 slideDuration

/** Time interval after which the DStream generates a RDD */
def slideDuration: Duration

slideDuration,时间窗口滑动长度;根据这个时间长度来生成一个RDD;

1.1.3 dependencies

/** List of parent DStreams on which this DStream depends on */
def dependencies: List[DStream[_]]

dependencies,DStreams的依赖关系;

1.1.4 compute

/** Method that generates a RDD for the given time */
def compute(validTime: Time): Option[RDD[T]]

compute,根据给定的时间来生成RDD;

1.1.5 zeroTime

// Time zero for the DStream
private[streaming] var zeroTime: Time = null

zeroTime,DStream的起点时间;

1.1.6 rememberDuration

// Duration for which the DStream will remember each RDD created
private[streaming] var rememberDuration: Duration = null

rememberDuration,记录DStream中每个RDD的产生时间;

1.1 7 storageLevel

// Storage level of the RDDs in the stream
private[streaming] var storageLevel: StorageLevel = StorageLevel.NONE

storageLevel,DStream中每个RDD的存储级别;

1.1.8 parentRememberDuration

// Duration for which the DStream requires its parent DStream to remember each RDD created
private[streaming] def parentRememberDuration = rememberDuration

parentRememberDuration,父DStream记录RDD的生成时间;

1.1.9 persist

/** Persist the RDDs of this DStream with the given storage level */
def persist(level: StorageLevel): DStream[T] = {
if (this.isInitialized) {
throw new UnsupportedOperationException(
"Cannot change storage level of a DStream after streaming context has started")
}
this.storageLevel = level
this
}

Persist,DStream中RDD的存储级别;

1.1.10 checkpoint

  /**
* Enable periodic checkpointing of RDDs of this DStream
* @param interval Time interval after which generated RDD will be checkpointed
*/
def checkpoint(interval: Duration): DStream[T] = {
if (isInitialized) {
throw new UnsupportedOperationException(
"Cannot change checkpoint interval of a DStream after streaming context has started")
}
persist()
checkpointDuration = interval
this
}

checkpoint,设置DStream的checkpoint时间间隔;

1.1.11 initialize

  /**
* Initialize the DStream by setting the "zero" time, based on which
* the validity of future times is calculated. This method also recursively initializes
* its parent DStreams.
*/
private[streaming] def initialize(time: Time) {
if (zeroTime != null && zeroTime != time) {
throw new SparkException(s"ZeroTime is already initialized to $zeroTime"
+ s", cannot initialize it again to $time")
}
zeroTime = time // Set the checkpoint interval to be slideDuration or 10 seconds, which ever is larger
if (mustCheckpoint && checkpointDuration == null) {
checkpointDuration = slideDuration * math.ceil(Seconds(10) / slideDuration).toInt
logInfo(s"Checkpoint interval automatically set to $checkpointDuration")
} // Set the minimum value of the rememberDuration if not already set
var minRememberDuration = slideDuration
if (checkpointDuration != null && minRememberDuration <= checkpointDuration) {
// times 2 just to be sure that the latest checkpoint is not forgotten (#paranoia)
minRememberDuration = checkpointDuration * 2
}
if (rememberDuration == null || rememberDuration < minRememberDuration) {
rememberDuration = minRememberDuration
} // Initialize the dependencies
dependencies.foreach(_.initialize(zeroTime))
}

initialize,DStream初始化,其初始时间通过"zero" time设置;

1.1.12 getOrCompute

  /**
* Get the RDD corresponding to the given time; either retrieve it from cache
* or compute-and-cache it.
*/
private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {

getOrCompute,通过时间参数获取RDD;

1.1.13 generateJob

  /**
* Generate a SparkStreaming job for the given time. This is an internal method that
* should not be called directly. This default implementation creates a job
* that materializes the corresponding RDD. Subclasses of DStream may override this
* to generate their own jobs.
*/
private[streaming] def generateJob(time: Time): Option[Job] = {
getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => {
val emptyFunc = { (iterator: Iterator[T]) => {} }
context.sparkContext.runJob(rdd, emptyFunc)
}
Some(new Job(time, jobFunc))
case None => None
}
}

generateJob,内部方法,来生成SparkStreaming的作业。

1.1.14 clearMetadata

/**

*Clear metadata that are older than `rememberDuration` of this DStream.

* This is an internal method that should notbe called directly. This default

* implementation clears the old generatedRDDs. Subclasses of DStream may override

* this to clear their own metadata alongwith the generated RDDs.

*/

private[streaming]defclearMetadata(time: Time) {

clearMetadata,内部方法,清除DStream中过期的数据。

1.1.15 updateCheckpointData

/**

* Refresh the list of checkpointed RDDs thatwill be saved along with checkpoint of

* this stream. This is an internal methodthat should not be called directly. This is

* a default implementation that saves onlythe file names of the checkpointed RDDs to

* checkpointData. Subclasses of DStream(especially those of InputDStream) may override

* this method to save custom checkpointdata.

*/

private[streaming]defupdateCheckpointData(currentTime:Time) {

updateCheckpointData,内部方法,更新Checkpoint。

1.2 DStream基本操作

1.2.1 map

/** Return a newDStreamby applying a function toall elements of this DStream. */

defmap[U: ClassTag](mapFunc: T=> U): DStream[U] = {

newMappedDStream(this, context.sparkContext.clean(mapFunc))

}

Map操作,对DStream中所有元素进行Map操作,和RDD中的操作一样。

1.2.2 flatMap

/**

* Return a new DStream by applying afunction to all elements of this DStream,

* and then flattening the results

*/

defflatMap[U:ClassTag](flatMapFunc: T => Traversable[U]): DStream[U] = {

newFlatMappedDStream(this, context.sparkContext.clean(flatMapFunc))

}

flatMap操作,对DStream中所有元素进行flatMap操作,和RDD中的操作一样。

1.2.3filter

/** Return a new DStream containing only the elements that satisfy apredicate. */

def filter(filterFunc: T => Boolean): DStream[T] = newFilteredDStream(this, filterFunc)

filter操作,对DStream中所有元素进行过滤,和RDD中的操作一样。

1.2.4 glom

/**

* Return a new DStream in which each RDD isgenerated by applying glom() to each RDD of

* this DStream. Applying glom() to an RDD coalescesall elements within each partition into

* an array.

*/

defglom(): DStream[Array[T]] =new GlommedDStream(this)

glom操作,对DStream中RDD的所有元素聚合,数组形式返回。

1.2.5 repartition

/**

* Return a new DStream with an increased ordecreased level of parallelism. Each RDD in the

* returned DStream has exactly numPartitionspartitions.

*/

defrepartition(numPartitions: Int):DStream[T] =this.transform(_.repartition(numPartitions))

repartition操作,对DStream中RDD重新分区,和RDD中的操作一样。

1.2.6 mapPartitions

/**

* Return a new DStream in which each RDD isgenerated by applying mapPartitions() to each RDDs

* of this DStream. Applying mapPartitions()to an RDD applies a function to each partition

* of the RDD.

*/

defmapPartitions[U:ClassTag](

mapPartFunc: Iterator[T] => Iterator[U],

preservePartitioning: Boolean = false

): DStream[U] = {

newMapPartitionedDStream(this, context.sparkContext.clean(mapPartFunc), preservePartitioning)

}

mapPartitions操作,对DStream中RDD进行mapPartitions操作,和RDD中的操作一样。

1.2.7 reduce

/**

* Return a new DStream in which each RDD hasa single element generated by reducing each RDD

* of this DStream.

*/

defreduce(reduceFunc:(T, T) => T): DStream[T] =

this.map(x => (null, x)).reduceByKey(reduceFunc, 1).map(_._2)

reduce操作,对DStream中RDD进行reduce操作,和RDD中的操作一样。

1.2.8 count

/**

* Return a new DStream in which each RDD hasa single element generated by counting each RDD

* of this DStream.

*/

defcount(): DStream[Long] = {

this.map(_=> (null,1L))

.transform(_.union(context.sparkContext.makeRDD(Seq((null,0L)),1)))

.reduceByKey(_ + _)

.map(_._2)

}

count操作,对DStream中RDD进行count操作,和RDD中的操作一样。

1.2.9 countByValue

/**

* Return a new DStream in which each RDDcontains the counts of each distinct value in

* each RDD of this DStream. Hashpartitioning is used to generate

* the RDDs with `numPartitions` partitions(Spark's default number of partitions if

* `numPartitions` not specified).

*/

defcountByValue(numPartitions:Int = ssc.sc.defaultParallelism)(implicit ord: Ordering[T] = null)

: DStream[(T, Long)] =

this.map(x => (x, 1L)).reduceByKey((x: Long, y: Long) => x +y, numPartitions)

countByValue操作,对DStream中RDD进行countByValue操作,和RDD中的操作一样。

1.2.10 foreachRDD

/**

* Apply a function to each RDD in thisDStream. This is an output operator, so

* 'this' DStream will be registered as anoutput stream and therefore materialized.

*/

defforeachRDD(foreachFunc:(RDD[T], Time) => Unit) {

// because the DStream is reachable from the outer objecthere, and because

// DStreams can't be serialized with closures, we can'tproactively check

// it for serializability and so we pass the optionalfalse to SparkContext.clean

newForEachDStream(this, context.sparkContext.clean(foreachFunc, false)).register()

}

foreachRDD操作,对DStream中RDD进行函数操作,该操作是一个输出操作。

1.2.11 transform

/**

* Return a new DStream in which each RDD isgenerated by applying a function

* on each RDD of 'this' DStream.

*/

deftransform[U:ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U] = {

// because the DStream is reachable from the outer objecthere, and because

// DStreams can't be serialized with closures, we can'tproactively check

// it for serializability and so we pass the optionalfalse to SparkContext.clean

transform((r: RDD[T], t: Time) =>context.sparkContext.clean(transformFunc(r),false))

}

transform操作,对DStream中RDD进行transform函数操作。

1.2.12 transformWith

/**

* Return a new DStream in which each RDD isgenerated by applying a function

* on each RDD of 'this' DStream and 'other'DStream.

*/

deftransformWith[U: ClassTag,V: ClassTag](

other: DStream[U], transformFunc:(RDD[T], RDD[U]) => RDD[V]

): DStream[V] = {

// because the DStream is reachable from the outer objecthere, and because

// DStreams can't be serialized with closures, we can'tproactively check

// it for serializability and so we pass the optionalfalse to SparkContext.clean

valcleanedF = ssc.sparkContext.clean(transformFunc, false)

transformWith(other, (rdd1: RDD[T], rdd2:RDD[U], time: Time) => cleanedF(rdd1, rdd2))

}

transformWith操作,对DStream与其它DStream进行transform函数操作。

1.2.13 print

/**

* Print the first ten elements of each RDDgenerated in this DStream. This is an output

* operator, so this DStream will beregistered as an output stream and there materialized.

*/

defprint() {

defforeachFunc = (rdd: RDD[T], time: Time) => {

valfirst11 = rdd.take(11)

println ("-------------------------------------------")

println ("Time: " + time)

println ("-------------------------------------------")

first11.take(10).foreach(println)

if(first11.size > 10) println("...")

println()

}

newForEachDStream(this, context.sparkContext.clean(foreachFunc)).register()

}

print操作,对DStream进行打印输出,这是一个输出操作。

1.2.14 window

/**

* Return a new DStream in which each RDDcontains all the elements in seen in a

* sliding window of time over this DStream.The new DStream generates RDDs with

* the same interval as this DStream.

@param windowDuration width of thewindow; must be a multiple of this DStream's interval.

*/

defwindow(windowDuration:Duration): DStream[T] = window(windowDuration,this.slideDuration)

/**

* Return a new DStreaminwhich each RDD contains all the elements in seen in a

* sliding window of time over this DStream.

@param windowDuration width of thewindow; must be a multiple of this DStream's

*                       batching interval

@param slideDuration  sliding interval of the window (i.e., theinterval after which

*                       the new DStream willgenerate RDDs); must be a multiple of this

*                       DStream's batchinginterval

*/

def window(windowDuration:Duration, slideDuration: Duration): DStream[T] = {

newWindowedDStream(this, windowDuration, slideDuration)

}

window操作,设置窗口时长、滑动时长,生成一个窗口的DStream。

1.2.15 reduceByWindow

/**

* Return a new DStream in which each RDD hasa single element generated by reducing all

* elements in a sliding window over thisDStream.

@param reduceFunc associativereduce function

@param windowDuration width of thewindow; must be a multiple of this DStream's

*                       batching interval

@paramslideDuration sliding interval of thewindow (i.e., the interval after which

*                       the new DStream willgenerate RDDs); must be a multiple of this

*                       DStream's batchinginterval

*/

def reduceByWindow(

reduceFunc: (T, T) => T,

windowDuration: Duration,

slideDuration: Duration

): DStream[T] = {

this.reduce(reduceFunc).window(windowDuration,slideDuration).reduce(reduceFunc)

}

/**

* Return a new DStream in which each RDD hasa single element generated by reducing all

* elements in a sliding window over thisDStream. However, the reduction is done incrementally

* using the old window's reduced value :

*  1.reduce the new values that entered the window (e.g., adding new counts)

*  2."inverse reduce" the old values that left the window (e.g.,subtracting old counts)

* This is more efficient than reduceByWindow without "inversereduce" function.

* However, it is applicable to only "invertible reduce functions".

@param reduceFunc associativereduce function

@param invReduceFunc inverse reducefunction

@param windowDuration width of thewindow; must be a multiple of this DStream's

*                       batching interval

@param slideDuration  sliding interval of the window (i.e., theinterval after which

*                       the new DStream willgenerate RDDs); must be a multiple of this

*                       DStream's batchinginterval

*/

defreduceByWindow(

reduceFunc:(T, T) => T,

invReduceFunc: (T, T) => T,

windowDuration: Duration,

slideDuration: Duration

): DStream[T] = {

this.map(x=> (1, x))

.reduceByKeyAndWindow(reduceFunc,invReduceFunc, windowDuration, slideDuration,1)

.map(_._2)

}

reduceByWindow操作,对窗口进行reduceFunc操作。

1.2.16 countByWindow

/**

* Return a new DStream in which each RDD hasa single element generated by counting the number

* of elements in a sliding window over thisDStream. Hash partitioning is used to generate

* the RDDs with Spark's default number ofpartitions.

@param windowDuration width of thewindow; must be a multiple of this DStream's

*                       batching interval

@param slideDuration  sliding interval of the window (i.e., theinterval after which

*                       the new DStream willgenerate RDDs); must be a multiple of this

*                       DStream's batchinginterval

*/

defcountByWindow(windowDuration:Duration, slideDuration: Duration): DStream[Long] = {

this.map(_=>1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)

}

countByWindow操作,对窗口进行count操作。

1.2.17countByValueAndWindow

/**

* Return a new DStream in which each RDDcontains the count of distinct elements in

* RDDs in a sliding window over thisDStream. Hash partitioning is used to generate

* the RDDs with `numPartitions` partitions(Spark's default number of partitions if

* `numPartitions` not specified).

@param windowDuration width of thewindow; must be a multiple of this DStream's

*                       batching interval

@param slideDuration  sliding interval of the window (i.e., theinterval after which

*                       the new DStream willgenerate RDDs); must be a multiple of this

*                       DStream's batchinginterval

@param numPartitions  number of partitions of each RDD in the newDStream.

*/

defcountByValueAndWindow(

windowDuration: Duration,

slideDuration: Duration,

numPartitions: Int =ssc.sc.defaultParallelism)

(implicitord: Ordering[T] = null)

: DStream[(T, Long)] =

{

this.map(x=> (x, 1L)).reduceByKeyAndWindow(

(x: Long, y: Long) => x + y,

(x: Long, y: Long) => x - y,

windowDuration,

slideDuration,

numPartitions,

(x: (T, Long)) => x._2 != 0L

)

}

countByValueAndWindow操作,对窗口进行countByValue操作。

1.2.18 union

/**

* Return a new DStream by unifying data ofanother DStream with this DStream.

@paramthat Another DStream having the same slideDuration as this DStream.

*/

defunion(that:DStream[T]): DStream[T] =new UnionDStream[T](Array(this, that))

/**

* Return all the RDDs defined by theInterval object (both end times included)

*/

def slice(interval:Interval): Seq[RDD[T]] = {

slice(interval.beginTime, interval.endTime)

}

union操作,对DStream和其它DStream进行合并操作。

1.2.19 slice

/**

* Return all the RDDs between 'fromTime' to'toTime' (both included)

*/

defslice(fromTime:Time, toTime: Time): Seq[RDD[T]] = {

if(!isInitialized) {

thrownew SparkException(this + " has not beeninitialized")

}

if(!(fromTime - zeroTime).isMultipleOf(slideDuration)) {

logWarning("fromTime (" + fromTime + ") is not amultiple of slideDuration ("

+ slideDuration + ")")

}

if(!(toTime - zeroTime).isMultipleOf(slideDuration)) {

logWarning("toTime (" + fromTime + ") is not amultiple of slideDuration ("

+ slideDuration + ")")

}

valalignedToTime = toTime.floor(slideDuration)

valalignedFromTime = fromTime.floor(slideDuration)

logInfo("Slicing from " + fromTime + " to " + toTime +

" (aligned to " + alignedFromTime + " and " + alignedToTime + ")")

alignedFromTime.to(alignedToTime,slideDuration).flatMap(time => {

if(time >= zeroTime) getOrCompute(time) elseNone

})

}

slice操作,根据时间间隔,取DStream中的每个RDD序列,生成一个RDD。

1.2.20saveAsObjectFiles

/**

* Save each RDD in this DStream as aSequence file of serialized objects.

* The file name at each batch interval isgenerated based on `prefix` and

* `suffix`:"prefix-TIME_IN_MS.suffix".

*/

defsaveAsObjectFiles(prefix: String, suffix: String = ""){

valsaveFunc = (rdd: RDD[T], time: Time) => {

valfile = rddToFileName(prefix, suffix, time)

rdd.saveAsObjectFile(file)

}

this.foreachRDD(saveFunc)

}

saveAsObjectFiles操作,输出操作,对DStream中的每个RDD输出为序列化文件格式。

1.2.21 saveAsTextFiles

/**

* Save each RDD in this DStreamasat text file, using string representation

* of elements. The file name at each batchinterval is generated based on

* `prefix` and `suffix`:"prefix-TIME_IN_MS.suffix".

*/

defsaveAsTextFiles(prefix:String, suffix: String ="") {

valsaveFunc = (rdd: RDD[T], time: Time) => {

valfile = rddToFileName(prefix, suffix, time)

rdd.saveAsTextFile(file)

}

this.foreachRDD(saveFunc)

}

/**

* Register this streaming as an outputstream. This would ensure that RDDs of this

* DStream will be generated.

*/

private[streaming]defregister(): DStream[T] = {

ssc.graph.addOutputStream(this)

this

}

}

saveAsTextFiles操作,输出操作,对DStream中的每个RDD输出为文本格式。

转载请注明出处:

http://blog.csdn.net/sunbow0/article/details/43091247

Android ListView初始化简单分析的更多相关文章

  1. Android.mk文件简单分析

    Android.mk文件简单分析 一个Android.mk文件用来向编译系统描写叙述须要编译的源码.详细来说:该文件是GNUMakefile的一小部分.会被编译系统解析一次或多次. 能够在每个Andr ...

  2. Android—— ListView 的简单用法及定制ListView界面

    一.ListView的简单用法 2. 训练目标 1) 掌握 ListView 控件的使用 2) 掌握 Adapter 桥梁的作用 实现步骤: 1)首先新建一个项目, 并让ADT 自动帮我们创建好活动. ...

  3. android:ListView 的简单用法

    首 先新 建 一个 ListViewTest 项 目, 并 让 ADT 自 动帮 我 们创 建 好 活动 . 然后 修 改 activity_main.xml 中的代码,如下所示: <Linea ...

  4. android#ListView的简单用法

    新建项目,并修改项目生产的主文件activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/ap ...

  5. Android Launcher 3 简单分析

    最近在学习Android Launcher的相关知识,在github上找到可以在Android studio上编译的Launcher 3代码,地址:https://github.com/rydanli ...

  6. android ListView 九大重要属性详细分析、

    android ListView 九大重要属性详细分析. 1.android ListView 一些重要属性详解,兄弟朋友可以参考一下. 首先是stackFromBottom属性,这只该属性之后你做好 ...

  7. Android SQLite与ListView的简单使用

    2017-04-25 初写博客有很多地方都有不足,希望各位大神给点建议. 回归主题,这次简单的给大家介绍一下Android SQLite与ListView的简单使用sqlite在上节中有介绍,所以在这 ...

  8. Android实现录屏直播(一)ScreenRecorder的简单分析

    http://blog.csdn.net/zxccxzzxz/article/details/54150396 Android实现录屏直播(一)ScreenRecorder的简单分析 Android实 ...

  9. Android ListView异步载入图片乱序问题,原因分析及解决方式

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/45586553 在Android全部系统自带的控件其中,ListView这个控件算是 ...

随机推荐

  1. mysql主配置文件my.cnf详细说明

    MySQL配置文件my.cnf 例子最详细翻译,可以保存做笔记用[转载]#BEGIN CONFIG INFO#DESCR: 4GB RAM, 只使用InnoDB, ACID, 少量的连接, 队列负载大 ...

  2. linux 终端快捷键

    1. 移动光标快捷键 ctrl+f 向前移动一个字符 ctrl+b 向后移动一个字符 alt+f 向前移动一个单词 alt+b 向后移动一个单词 ctrl+a 移动到当前行首 ctrl+e 移动到当前 ...

  3. json 筛选数据 $.grep过滤数据

    var data = { status: "ok", image_size_list: [ { image_size_id: "22", ad_class: & ...

  4. C指针笔记

    指针的学习 两个数比较大小,通过传递内容进行比较 #include <stdio.h> void swap(int *p1, int *p2){ int temp; //注意指变量*的两个 ...

  5. TypeScript学习指南--目录索引

    关于TypeScript: TypeScript是一种由微软开发的自由和开源的编程语言.它是JavaScript的一个超集,而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程. TypeS ...

  6. 【BZOJ1823】 [JSOI2010]满汉全席

    Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而 ...

  7. 我的PHP之旅--SQL语句

    SQL语句 结构化查询语言(Structured Query Language)简称SQL,是一种操作数据的语言. 增加记录 INSERT INTO table_name(字段1, 字段2, 字段3) ...

  8. JAVA入门第一季(mooc-笔记)

    笔记相关信息 /** * @subject <学习与创业>作业1 * @author 信管1142班 201411671210 赖俊杰 * @className <JAVA入门第一季 ...

  9. 解决Linux/aix 下的websphere log4j不生效

    websphere 解决Linux/aix下的log4j不生效 在目录: /IBM/WebSphere/AppServer/profiles/AppSrv01/properties 增加一个文件:可以 ...

  10. 被FBI点名的中国黑客-Lion

    网名:Lion(狮子) 真实姓名:林勇 QQ:21509     简介:红客联盟创始人(该组织在2001年5月的黑客大战中一举成名,会员人数最多时达到6万,很有影响力),现在安氏因特网安全系统(中国) ...