题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11358

【思路】

二分法+半平面交

二分与海边的的距离,由法向量可以得到平移后的各边,半平面交在特定精度判断是否有交集。

【代码】

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const double eps = 1e-; struct Pt {
double x,y;
Pt(double x=,double y=):x(x),y(y) {}
};
typedef Pt vec;
struct Line {
Pt P; vec v;
double ang;
Line () {};
Line (Pt P,vec v):P(P),v(v) { ang=atan2(v.y , v.x); }
bool operator < (const Line& rhs) const{
return ang<rhs.ang;
}
}; vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); }
vec operator + (vec A,vec B) { return vec(A.x+B.x,A.y+B.y); }
vec operator * (vec A,double p) { return vec(A.x*p,A.y*p); }
double Dot(vec A,vec B) { return A.x*B.x+A.y*B.y; }
double cross(Pt A,Pt B) { return A.x*B.y-A.y*B.x; }
double Len(vec A) { return sqrt(Dot(A,A)); }
vec Normal(vec A) { double L=Len(A); return vec(-A.y/L,A.x/L); } bool onleft(Line L,Pt P) { return cross(L.v,P-L.P)>; } Pt LineIntersection(Line a,Line b) {
vec u=a.P-b.P;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.P+a.v*t;
}
int HalfplaneIntersection(Line* L,int n,Pt* poly) {
sort(L,L+n);
int first,last;
Pt *p=new Pt[n];
Line *q=new Line[n];
q[first=last=]=L[];
for(int i=;i<n;i++) {
while(first<last && !onleft(L[i],p[last-])) last--;
while(first<last && !onleft(L[i],p[first])) first++;
q[++last]=L[i];
if(fabs(cross(q[last].v,q[last-].v))<eps) {
last--;
if(onleft(q[last],L[i].P)) q[last]=L[i];
}
if(first<last) p[last-]=LineIntersection(q[last-],q[last]);
}
while(first<last && !onleft(q[first],p[last-])) last--;
if(last-first<=) return ;
p[last]=LineIntersection(q[last],q[first]);
int m=;
for(int i=first;i<=last;i++) poly[m++]=p[i];
return m;
} const int N = +;
Pt p[N],poly[N];
Line L[N];
vec v[N] , v2[N];
int n; int main() {
while(scanf("%d",&n)== && n) {
int m,x,y;
for(int i=;i<n;i++) {
scanf("%d%d",&x,&y);
p[i]=Pt(x,y);
}
for(int i=;i<n;i++) {
v[i]=p[(i+)%n]-p[i];
v2[i]=Normal(v[i]);
}
double left= , right=;
while(right-left>eps) {
double mid=left+(right-left)/;
for(int i=;i<n;i++) L[i]=Line(p[i]+v2[i]*mid,v[i]);
m=HalfplaneIntersection(L,n,poly);
if(!m) right=mid; else left=mid;
}
printf("%.6lf\n",left);
}
return ;
}

UVA 3890 Most Distant Point from the Sea(二分法+半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  2. poj3525Most Distant Point from the Sea(半平面交)

    链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #in ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  4. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  5. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  6. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  7. uvalive 3890 Most Distant Point from the Sea

    题意:求一个凸多边形中一点到边的最大距离. 思路:转换成在多边形内部,到每边距离为d的直线所围成的内多边形是否存在.也就是,二分距离+半平面交. #include<cstdio> #inc ...

  8. uva 1396 - Most Distant Point from the Sea

    半平面的交,二分的方法: #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-6 ...

  9. UVALive 3890 Most Distant Point from the Sea(凸包最大内接园)

    一个n个点的凸多边形,求多边形中离多边形边界最远的距离.实际上就是求凸包最大内接圆的半径. 利用半平面交求解,每次二分枚举半径d,然后将凸包每条边所代表的半平面沿其垂直单位法向量平移d,看所有平移后的 ...

随机推荐

  1. bzoj1688: [Usaco2005 Open]Disease Manangement 疾病管理

    思路:状压dp,枚举疾病的集合,然后判断一下可行性即可. #include<bits/stdc++.h> using namespace std; #define maxs 400000 ...

  2. Codeforces Round #80 Div.1 D

    思路:考虑离线操作,以y为关键字排序,对于y相同的一起操作,然后考虑y的范围,当y<=sqrt(n)时,直接O(n)预处理出f[x]表示f[x]+f[x+y]+f[x+2*y]+..+f[x+k ...

  3. 解决UIScrollView 的点击事件

    目前有两种方法 第一种 通过 Category 扩展 UIScrollView 对象,添加触摸事件,(不建议,后续扩展不方便)代码如下 @implementation UIScrollView (Ex ...

  4. thinkphp 缓存写入失败,网站报错

    周末,正在家里休息,同事突然call 我,说网站打不开了,网站一直很正常的,突然成这样,肯定某个地方出问题了, 原来是网站所在的硬盘分区,没空间了,被mysql的日志占满了!!! 哎,好好的周末,在公 ...

  5. onmouseleave与onmouseout区别

    1.onmouseleave.onmouseenter,鼠标进入到指定元素区域内触发事件,不支持冒泡,不包含子元素的区域. 2.onmouseout.onmouseover.鼠标进入指定元素触发事件, ...

  6. 学习PHP爬虫--《Webbots、Spiders和Screen Scrapers:技术解析与应用实践(原书第2版)》

    <Webbots.Spiders和Screen Scrapers:技术解析与应用实践(原书第2版)> 译者序 前言 第一部分 基础概念和技术 第1章 本书主要内容3 1.1 发现互联网的真 ...

  7. PHP源代码分析(第一章):Zend HashTable详解【转】

    转载于http://www.phppan.com/2009/12/zend-hashtable/ 在PHP的Zend引擎中,有一个数据结构非常重要,它无处不在,是PHP数据存储的核心,各种常量.变量. ...

  8. 详解C/C++函数指针声明

    要理解一个C程序,仅仅理解组成该程序的符号是不够的.程序员还必须理解这些符号是如何组合成声明.表达式.语句和程序的. 我们先来看看下面的一个语句: 1 ( *( void(*)())0)(); 这是当 ...

  9. 50个实用的jQuery代码段让你成为更好的Web前端工程师

    本文会给你们展示50个jquery代码片段,这些代码能够给你的javascript项目提供帮助.其中的一些代码段是从jQuery1.4.2才开始支持的做法,另一些则是真正有用的函数或方法,他们能够帮助 ...

  10. bzoj 1209: [HNOI2004]最佳包裹 三维凸包

    1209: [HNOI2004]最佳包裹 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 160  Solved: 58[Submit][Status] ...