Description

给出正整数\(n\)和\(k\),计算\(j(n, k)=k\;mod\;1\;+\;k\;mod\;2\;+\;k\;mod\;3\;+\;…\;+\;k\;mod\;n\)的值,其中\(k\;mod\;i\)表示\(k\)除以\(i\)的余数。例如\(j(5, 3)=3\;mod\;1\;+\;3\;mod\;2\;+\;3\;mod\;3\;+\;3\;mod\;4\;+\;3\;mod\;5=0+1+0+3+3=7\)

Input

输入仅一行,包含两个整数\(n, k\)。

Output

输出仅一行,即\(j(n, k)\)。

Sample Input

5 3

Sample Output

7

HINT

\(50\%\)的数据满足:\(1 \le n, k le 1000\)。

\(100\%\)的数据满足:\(1 \le n ,k \le 10^{9}\)。

\(n\;mod\;i=n-i \times \lfloor \frac{n}{i} \rfloor\),因此我们可以对\(\lfloor \frac{n}{i} \rfloor\)相同的值的一块进行分块(\(\sqrt{n}\)块)。

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std; typedef long long ll; inline ll sum(ll a,ll b) { return (a+b)*(b-a+1)>>1; } inline ll calc(ll n,ll m)
{
ll ret = 0;
if (m > n) ret = (m-n)*n,m = n;
ll pos;
for (ll i = 1;i <= m;i = pos+1)
{
pos = min(n/(n/i),m);
ret += (pos-i+1)*n-sum(i,pos)*(n/i);
}
return ret;
} int main()
{
freopen("1257.in","r",stdin);
freopen("1257.out","w",stdout);
ll n,m;
scanf("%lld %lld",&m,&n);
printf("%lld",calc(n,m));
fclose(stdin); fclose(stdout);
return 0;
}

BZOJ 1257 余数之和的更多相关文章

  1. BZOJ - 1257 余数之和(数学)

    题目链接:余数之和 题意:给定正整数$n$和$k$,计算$k\%1+k\%2+\dots+k\%n$的值 思路:因为$k\%i=k-\left \lfloor \frac{k}{i} \right \ ...

  2. BZOJ 1257 余数之和sum

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1257 题意:计算sigama(m%i)(1<=i<=n). 思路: 这样就简 ...

  3. BZOJ 1257 - 余数之和 - [CQOI2007]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 题意: 给定正整数 $n,k$,求 $(k \bmod 1) + (k \bmod ...

  4. [bzoj] 1257 余数之和sum || 数论

    原题 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数. \(\sum^n_{i=1} ...

  5. bzoj 1257 余数之和 —— 数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...

  6. BZOJ 1257 余数之和 题解

    题面 这道题是一道整除分块的模板题: 首先,知道分块的人应该知道,n/i最多有2*sqrt(n)种数,但这和余数有什么关系呢? 注意,只要n/i的值和n/(i+d)的值一样,那么n%i到n%(i+d) ...

  7. BZOJ 1257 余数之和sum(分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46954 题意:f(n, k)=k mod 1 + k mod 2 ...

  8. 【BZOJ1257】【CQOI2007】余数之和sum

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...

  9. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

随机推荐

  1. 通过mybatis读取数据库数据并提供rest接口访问

    1 mysql 创建数据库脚本 -- phpMyAdmin SQL Dump -- version 4.2.11 -- http://www.phpmyadmin.net -- -- Host: lo ...

  2. c++ 字符串流 sstream(常用于格式转换) 分类: C/C++ 2014-11-08 17:20 150人阅读 评论(0) 收藏

    使用stringstream对象简化类型转换 C++标准库中的<sstream>提供了比ANSI C的<stdio.h>更高级的一些功能,即单纯性.类型安全和可扩展性.在本文中 ...

  3. Struts2和Struts1的不同

    转载(没看懂) Action 类 ◆Struts1要求Action类继承一个抽象基类org.apache.struts.action.Action.Struts1的一个普遍问题是使用抽象类编程而不是接 ...

  4. Java基础知识强化之集合框架笔记37:用户登录注册案例

    1. 登录注册案例分析图解: 2. 用户登录案例 详细分析 和 分包实现: (1)用户登录案例详细分析(面向对象思想) 按照如下的操作,可以让我们更符合面向对象思想: • 有哪些类呢?         ...

  5. 屏蔽Codeforces做题时的Problem tags提示

    当在Codeforces上做题的时,有时会无意撇到右侧的Problem tags边栏,但是原本并不希望能够看到它. 能否把它屏蔽了呢?答案是显然的,我们只需要加一段很短的CSS即可. span.tag ...

  6. js分家效应

    (原创文章,转载请注明出处) 有继承,那么就有分家.让我们看以下例子. var parents = function(){ } parents.prototype.money = 200; var c ...

  7. 判断浏览器是否支持FileReader

    1.js代码: //判断浏览器是否支持FileReader if (typeof FileReader == "undefined") { document.write(" ...

  8. HTML5 History对象,Javascript修改地址栏而不刷新页面(二)

    一.实例说明: $('#btnOne').click(function () { var stateObject = { id: 1 }; var title = "本地首页"; ...

  9. SQL替换空格,制表符,换行符,回车符.

    首先是空格的替换,很重要的有点是,要确保字段的类型,不是char或nchar等固定的类型,否则无法去掉空格. 去掉空格很简单,如下为SQL实例: --去掉 T_StuffBasic 表中FBranch ...

  10. (转载)[FFmpeg]使用ffmpeg从各种视频文件中直接截取视频图片

    你曾想过从一个视频文件中提取图片吗?在Linux下就可以,在这个教程中我将使用ffmpeg来从视频中获取图片. 什么是ffmpeg?What is ffmpeg? ffmpeg是一个非常有用的命令行程 ...