P1832 A+B Problem(再升级)

题目提供者 usqwedf

传送门

标签 动态规划 数论(数学相关) 洛谷原创

难度 普及/提高-

通过/提交 107/202

题目背景

·题目名称是吸引你点进来的 ·实际上该题还是很水的

题目描述

·1+1=? 显然是2

·a+b=? 1001回看不谢

·哥德巴赫猜想 似乎已呈泛滥趋势

·以上纯属个人吐槽

·给定一个正整数n,求将其分解成若干个素数之和的方案总数。

输入输出格式

输入格式:

一行:一个正整数n

输出格式:

一行:一个整数表示方案总数

输入输出样例

输入样例#1:

7

输出样例#1:

3

说明

【样例解释】

7=7 7=2+5

7=2+2+3

【福利数据】

【输入】 20

【输出】 26

【数据范围及约定】

对于30%的数据 1<=n<=10

对于100%的数据,1<=n<=10^3

  1. /*
  2. 又是所谓方案数背包,
  3. 这题以前是用回溯做的——
  4. 先把1到n的prime nubmer 搞出来.
  5. 然后跑背包.
  6. from 1 to J的方案数
  7. 由j-i的方案数(i为质数)转移而来.
  8. */
  9. #include<iostream>
  10. #include<cstdio>
  11. #include<cmath>
  12. #define MAXN 1001
  13. using namespace std;
  14. int w[MAXN],n,tot;
  15. long long f[MAXN];
  16. bool jd()//埃氏筛.
  17. {
  18. for(int i=2;i<=n;i++)
  19. {
  20. if(!w[i])
  21. for(int j=i+i;j<=n;j+=i)
  22. w[j]=1;
  23. }
  24. }
  25. /*for(int i=2;i<=n;i++) //普通筛法.
  26. {
  27. if(!jd(i)) w[++tot]=i;
  28. }
  29. f[0]=1;
  30. for(int i=1;i<=tot;i++)
  31. for(int j=w[i];j<=n;j++)
  32. f[j]+=f[j-w[i]];
  33. bool jd(int x)
  34. {
  35. for(int i=2;i<=sqrt(x);i++)
  36. {
  37. if(x%i==0) return 1;
  38. }
  39. return 0;
  40. }*/
  41. int main()
  42. {
  43. cin>>n;
  44. jd();
  45. f[0]=1;
  46. for(int i=2;i<=n;i++)
  47. if(!w[i])
  48. for(int j=i;j<=n;j++)
  49. f[j]+=f[j-i];
  50. cout<<f[n];
  51. return 0;
  52. }

P1832 A+B Problem(再升级)的更多相关文章

  1. 洛谷——P1832 A+B Problem(再升级)

    P1832 A+B Problem(再升级) 题目背景 ·题目名称是吸引你点进来的 ·实际上该题还是很水的 题目描述 ·1+1=? 显然是2 ·a+b=? 1001回看不谢 ·哥德巴赫猜想 似乎已呈泛 ...

  2. 洛谷P1832 A+B Problem(再升级) [2017年4月计划 动态规划03]

    P1832 A+B Problem(再升级) 题目背景 ·题目名称是吸引你点进来的 ·实际上该题还是很水的 题目描述 ·1+1=? 显然是2 ·a+b=? 1001回看不谢 ·哥德巴赫猜想 似乎已呈泛 ...

  3. A+B Problem(再升级)

    洛谷P1832 A+B Problem(再升级) ·给定一个正整数n,求将其分解成若干个素数之和的方案总数. 先说我的垃圾思路,根本没有验证它的正确性就xjb写的,过了垃圾样例,还水了20分,笑哭.. ...

  4. NGK福利再升级,1万枚VAST限时免费送

    NGK在推出持有算力获得SPC空投活动后,福利再升级,于美国加州时间2021年2月8日下午4点推出新人福利活动,注册NGK成为新会员,即可获得0.2枚VAST奖励. VAST免费福利送活动仅送出1万枚 ...

  5. 年中盘点 | 2022年,PaaS 再升级

    作者丨刘世民(Sammy Liu)全文共7741个字,预计阅读需要15分钟 过去十五年,是云计算从无到有突飞猛进的十五年.PaaS作为云计算的重要组成部分,在伴随着云计算高速发展的同时,在云计算产业链 ...

  6. 洛谷P1832 A+B Problem(再升级) 题解 完全背包方案计数

    题目链接:https://www.luogu.com.cn/problem/P1832 题目大意: 给定一个正整数n,求将其分解成若干个素数之和的方案总数. 解题思路: 首先找到所有 \(\le n\ ...

  7. P1832题解 A+B Problem(再升级)

    万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...

  8. 完全背包【p1832】A+B Problem(再升级)

    Description 给定一个正整数n,求将其分解成若干个素数之和的方案总数. Input 一行:一个正整数n Output 一行:一个整数表示方案总数 素数之和 ? 背包啊. 没一遍切的题都不是水 ...

  9. 洛谷P1832 A+B Problem(再升级)

    放题解 题目传送门 放代码 #include<bits/stdc++.h> using namespace std; ];//n为被分解数 a数组用于存储素数 ];//dp数组用于存储方案 ...

随机推荐

  1. Java同步块(synchronized block)使用详解

    Java 同步块(synchronized block)用来标记方法或者代码块是同步的.Java同步块用来避免竞争.本文介绍以下内容: Java同步关键字(synchronzied) 实例方法同步 静 ...

  2. MySQL 数据库中用户表中口令登陆设置

    工具:MyEclipse8.5.apache-tomcat-6.0.43.MySQL5.6 问题:项目是同事发给我,正常运行之后,使用MySQL表里的管理员数据登陆时,提示“仅限于非总部工号登录!” ...

  3. 问题-[WIN8.132位系统]安装Win8.1 遇到无法升级.NET Framework 3.5.1

    问题现象:安装Win8后都遇到了无法升级.NET Framework 3.5.1的问题,在线升级会遇到错误0x800F0906.这使得91手机助手等很多软件无法运行,更郁闷的是,网上几乎所有的解决办法 ...

  4. C# Adomd Connection Analysis Service View Cube

    首先需要先引用 C:\Program Files\Microsoft.NET\ADOMD.NET\100\Microsoft.AnalysisServices.AdomdClient.dll      ...

  5. GPUImage的简单使用

    GPUImage 是一个开源的图像处理库,提供了非常多的滤镜效果来加工图片.GPUImage 并不像一般的第三方库可以直接拖入到工程中使用,而是需要先在本地编译,然后将编译后的文件拖入到工程中使用.配 ...

  6. 为什么 var_dump("1" == "1e0"); 的结果为true

    今天,同学问我一个问题,如下:var_dump("1" == "1e0"); 的结果是什么. 我的第一反应,答案是false.因为很明显的要比较的是两个字符串, ...

  7. Swift利用闭包(closure)来实现传值--&gt;前后两个控制器的反向传值

    利用了大约一个多小时来搞明确OC中Blocks反向传值和Swift中Closure反向传值的区别,以下直接贴上代码: 一.第一个界面 // Created by 秦志伟 on 14-6-13. imp ...

  8. 走进C++程序世界-----继承和派生(2)

    覆盖基类的函数 覆盖基类函数顾名思义就是在派生类中对基类的函数进行的重新定义.这里将会讲到下面的2个知识点: 1.隐藏基类的方法 2.调用基类的方法(隐式和显示调用基类的方法) /* *derive2 ...

  9. QTP下载链接

    QTP下载链接 QTP官网下载:http://www8.hp.com/us/en/software-solutions/software.html?compURI=1172957#.UNMOQ2_FW ...

  10. hdu1047(Java)大数相加

    题目大意:输入n组数据,每组数据中又有若干长度不大于100的整数,以0结束每组数据的输入,求每组中数据之和.每两组数据输入之间有一行空格,输出也是如此. Integer Inquiry Time Li ...