【问题描述】

风景迷人的小城Y 市,拥有n 个美丽的景点。由于慕名而来的游客越来越多,Y 市特意安排了一辆观光公交车,为游客提供更便捷的交通服务。观光公交车在第0 分钟出现在1号景点,随后依次前往2、3、4……n 号景点。从第i 号景点开到第i+1 号景点需要Di 分钟。
任意时刻,公交车只能往前开,或在景点处等待。
设共有m 个游客,每位游客需要乘车1 次从一个景点到达另一个景点,第i 位游客在Ti 分钟来到景点Ai,希望乘车前往景点Bi(Ai<bi)。为了使所有乘客都能顺利到达目的地,公交车在每站都必须等待需要从该景点出发的所有乘客都上车后才能出发开往下一景点
假设乘客上下车不需要时间。
一个乘客的旅行时间,等于他到达目的地的时刻减去他来到出发地的时刻。因为只有一辆观光车,有时候还要停下来等其他乘客,乘客们纷纷抱怨旅行时间太长了。于是聪明的司机ZZ
给公交车安装了k 个氮气加速器,每使用一个加速器,可以使其中一个Di 减1。对于同一个Di 可以重复使用加速器,但是必须保证使用后Di 大于等于0
那么ZZ 该如何安排使用加速器,才能使所有乘客的旅行时间总和最小?

【输入】

输入文件名为bus.in。
第1 行是3 个整数n, m, k,每两个整数之间用一个空格隔开。分别表示景点数、乘客数和氮气加速器个数。
第2 行是n-1 个整数,每两个整数之间用一个空格隔开,第i 个数表示从第i 个景点开往第i+1 个景点所需要的时间,即Di。
第3 行至m+2 行每行3 个整数Ti, Ai, Bi,每两个整数之间用一个空格隔开。第i+2 行表示第i 位乘客来到出发景点的时刻,出发的景点编号和到达的景点编号。

【输出】

输出文件名为bus.out。共一行,包含一个整数,表示最小的总旅行时间。

【输入输出样例】

bus.in bus.out
3 3 2
1 4
0 1 3
1 1 2
5 2 3
10

【输入输出样例说明】

对D2 使用2 个加速器,从2 号景点到3 号景点时间变为2 分钟。
公交车在第1 分钟从1 号景点出发,第2 分钟到达2 号景点,第5 分钟从2 号景点出发,第7 分钟到达3 号景点。
第1 个旅客旅行时间 7-0 = 7 分钟。
第2 个旅客旅行时间 2-1 = 1 分钟。
第3 个旅客旅行时间 7-5 = 2 分钟。
总时间 7+1+2 = 10 分钟。

【数据范围】

对于10%的数据,k=0;
对于20%的数据,0<=k<=1;
对于40%的数据,2 ≤ n ≤ 50,1 ≤ m≤ 1,000,0 ≤ k ≤ 20,0 ≤ Di ≤ 10,0 ≤ Ti ≤ 500;
对于60%的数据,1 ≤ n ≤ 100,1 ≤ m≤ 1,000,0 ≤ k ≤ 100,0 ≤ Di ≤ 100,0 ≤ Ti ≤ 10,000;
对于100%的数据,1 ≤ n ≤ 1,000,1 ≤ m ≤ 10,000,0 ≤ k ≤ 100,000,0 ≤ Di ≤ 100,0 ≤ Ti ≤ 100,000。

  这道题可以很容易地想到费用流做法,然后发现这个模型可以自己模拟费用流,复杂度小些。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=;
int lst[N],d[N],cd[N];
int beg[N],n,m,k,ans;
int in[N],out[N],val[N];
int main(){
freopen("bus.in","r",stdin);
freopen("bus.out","w",stdout);
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<n;i++)
scanf("%d",&d[i]);
for(int i=,t,a,b;i<=m;i++){
scanf("%d%d%d",&t,&a,&b);
lst[a]=max(lst[a],t);
in[a]++;out[b]++;
ans-=t;
}
for(int i=;i<=n;i++){
in[i]+=in[i-];
out[i]+=out[i-];
}
while(k--){
for(int i=;i<=n;i++){
beg[i]=max(lst[i-],beg[i-]);
beg[i]=beg[i]+d[i-];
}
int pos=-,tmp=;
for(int i=n-;i>=;i--){
val[i]=out[i+]-out[i];
if(lst[i+]<beg[i+])
val[i]+=val[i+];
if(d[i]&&val[i]>tmp)
tmp=val[i],pos=i;
}
if(pos==-)break;
d[pos]-=;
}
for(int i=;i<=n;i++){
beg[i]=max(lst[i-],beg[i-])+d[i-];
ans+=beg[i]*(out[i]-out[i-]);
}
printf("%d\n",ans);
return ;
}

贪心(模拟费用流):NOIP2011 观光公交的更多相关文章

  1. UOJ #455 [UER #8]雪灾与外卖 (贪心、模拟费用流)

    题目链接 http://uoj.ac/contest/47/problem/455 题解 模拟费用流,一个非常神奇的东西. 本题即为WC2019 laofu的讲课中的Problem 8,经典的老鼠进洞 ...

  2. luogu P5470 [NOI2019]序列 dp 贪心 费用流 模拟费用流

    LINK:序列 考虑前20分 容易想到爆搜. 考虑dp 容易设\(f_{i,j,k,l}\)表示前i个位置 选了j对 且此时A选择了k个 B选择了l个的最大值.期望得分28. code //#incl ...

  3. BZOJ4977[Lydsy1708月赛]跳伞求生——贪心+堆+模拟费用流

    题目链接: 跳伞求生 可以将题目转化成数轴上有$n$个人和$m$个房子,坐标分别为$a_{i}$和$b_{i}$,每个人可以进一个他左边的房子,每个房子只能进一个人.每个房子有一个收益$c_{i}$, ...

  4. 模拟费用流 & 可撤销贪心

    1. CF730I Olympiad in Programming and Sports 大意: $n$个人, 第$i$个人编程能力$a_i$, 运动能力$b_i$, 要选出$p$个组成编程队, $s ...

  5. 【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  6. [UOJ455][UER #8]雪灾与外卖——堆+模拟费用流

    题目链接: [UOJ455]雪灾与外卖 题目描述:有$n$个送餐员(坐标为$x_{i}$)及$m$个餐厅(坐标为$y_{i}$,权值为$w_{i}$),每个送餐员需要前往一个餐厅,每个餐厅只能容纳$c ...

  7. Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]

    洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...

  8. 【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

    [BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sam ...

  9. 【bzoj3291】Alice与能源计划 模拟费用流+二分图最大匹配

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验. 为了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

随机推荐

  1. java新手笔记8 包

    1.main函数 public class MainParam { //考察main 方法的参数 args //运行时可以传入参数 参数类型 String public static void mai ...

  2. scala - 从合并两个Map说开去 - foldLeft 和 foldRight 还有模式匹配

    开发中遇到需求:合并两个Map集合对象(将两个对应KEY的值累加) 先说解决方案: ( map1 )) ) } 这特么什么鬼  (╯‵□′)╯""┻━┻☆))>○<)  ...

  3. IE 动态绑定click事件

    //必须先清除原有的事件 $(dom).attr("onclick", ""); //再重新绑定新的事件 $(dom).bind("click&quo ...

  4. 【搭建开发环境】在 Windows XP 中参与开源项目,搭建 git 和 cygwin 开发环境

    引言 只有一台 Windows XP 家用机,却想在诸如 Git@OSC 之类的开源社区参与开发,本文提供一个入门级的开发环境搭建指引. 涉及工具:Eclipse,EGit,Cygwin. 欢迎来到 ...

  5. js实现幻灯片播放图片示例代码

    幻灯片播放图片的效果想必大家都有见到过吧,下面有个不错的示例,感兴趣的朋友可以参考下 复制代码代码如下: <select id="img_date" style=" ...

  6. Python学习_数据处理split方法

    用open方法导入文件“sketch.txt”后,用split()方法进行分割: >>> import os >>> os.chdir('C:/Python33/H ...

  7. OrderedDict

    OrderedDict 使用dict时,Key是无序的.在对dict做迭代时,我们无法确定Key的顺序. 如果要保持Key的顺序,可以用OrderedDict: >>> from c ...

  8. copy,retain,assign,strong,weak的区别

    引用地址:http://www.aichengxu.com/view/32930 一.assign,copy,retain 1.copy是内容复制,新建一个相同内容的不同指针,retain为指针复制, ...

  9. POJ 2635 The Embarrassed Cryptographer 大数模

    题目: http://poj.org/problem?id=2635 利用同余模定理大数拆分取模,但是耗时,需要转化为高进制,这样位数少,循环少,这里转化为1000进制的,如果转化为10000进制,需 ...

  10. IT全称

    1.jar,war,ear(摘自:http://blog.sina.com.cn/s/blog_54bb7b950100wnbb.html) Jar文件(扩展名为. Jar)包含Java类的普通库.资 ...