The Best Travel Design
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1359   Accepted: 340

Description

Dou Nai is an excellent ACM programmer, and he felt so tired recently that he wants to release himself from the hard work. He plans a travel to Xin Jiang .With the influence of literature, he wishes to visit Tian Chi, Da Ban Town, Lou Lan mysterious town , Yi Li , and other sights that also have great attraction to him. But the summer vocation time is not long. He must come back before the end of the summer vocation. For visiting more sights and all the necessary sights, he should make a thorough plan. Unfortunately, he is too tired to move, so you must help him to make this plan. Here are some prerequisites: there are two ways of transportation, bus and train, and velocity of the bus is 120km/h and the train is 80km/h. Suppose the travel is started from Urumuqi (point 1), and the end of the travel route is Urumuqi too. You need to spend some time to visit the sights, but the time of each visit is not always equal. Suppose we spend 12 hours on traveling every day.

Input

There are several test cases. For each case, the first line is three integers N, M and K. N (1<=n<=15) is the number of sights, M(0<=M<=N) is total sights he must arrived (sight 1 is always must be arrived) and K is total traveling time (per day). The second line is M integers which sights he must visited. The third line is N integers, the i th integer means the time he will stay in the sight i (per hour). Then several lines follow. Each line is four integers x, y, len and kind, 1<=x, y<=n, 0<len<=1000, means there is a bidirectional path between sights x and y, the distance is len, kind=0 means x and y are connected by train, kind=1 is by bus.
x=y=len=kind=0 means end of the path explanation.

N=M=K=0 means end of the input.

Output

For each case, output maximum sights he will travel with all necessary sights visited or "No Solution" if he can't travel all the sights he like best in time.

Sample Input

3 3 3
1 2 3
10 8 6
1 2 120 0
1 3 60 1
2 3 50 1
0 0 0 0
3 3 2
1 2 3
10 8 6
1 2 120 0
1 3 60 1
2 3 50 1
0 0 0 0
0 0 0

Sample Output

3
No Solution

Source

题意:
很多旅游景点,在给定时间内,给定要游览的点。点与点之间由不同长度的路连接。有两种交通方式------火车和BUS,速度不同且已知。从起点1出发,要求在给定时间内
把给定景点游览完且回到起点1,并且游览的景点最多。输出最多的游览个数。如果给定景点在限定时间内不能都游览完则输出no solution.(大写)。每个景点的stay的时间
也已知。

注:给定游览时间以天计算,而且每天的游览时间为12个小时。


代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#define INF 1e9
using namespace std; double a[20],t;
double map[22][22];
double dp[20][1<<20];
int n,m; void init()
{
int i,j;
for(i=0;i<n;i++)
{
map[i][i]=0;
for(j=0;j<n;j++)
{
map[i][j]=INF;
}
for(j=0;j<(1<<n);j++) //所有状态下i为终点的用时都初始化为无穷大
{
dp[i][j]=INF;
}
}
}
void floyd()
{
int i,j,k;
for(k=0; k<n; k++) //k为i和j之间的点
{
for(i=0; i<n; i++)
{
if(i!=k&&map[i][k]<INF)
for(j=0; j<n; j++)
{
if(i!=j&&map[k][j]<INF)
{
map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
}
}
}
}
} int main()
{
int res,cnt,tmp,ans,x,y,kind,len,i,j,k;
while(scanf("%d%d%lf",&n,&m,&t),(n||m||t))
{
res=0,ans=-1;
double day=t*12.0;
init();
for(i=1;i<=m;i++)
{
scanf("%d",&k);
res+=1<<(k-1); //res记录要访问的所有点的状态,便于之后对照。
}
for(i=0;i<n;i++)
scanf("%lf",&a[i]); //a[i]记录每个景点stay的用时
while(scanf("%d%d%d%d",&x,&y,&len,&kind),(x||y||len||kind))
{
x--,y--; //转化为以0为起点
double hour=len*1.0/(kind?120.0:80.0);
map[x][y]=min(hour,map[x][y]);
map[y][x]=min(hour,map[y][x]);
}
floyd();
for(i=1;i<n;i++)
dp[i][1<<i]=map[0][i]+a[i]; //初始化从起点直接到i的用时
for(j=0;j<(1<<n);j++) //枚举所有状态
{
for(i=0;i<n;i++) //在起点0和i之间取点k来更新最短用时,dp实现
{
if((j&(1<<i))&&j!=(1<<i)) //j状态包含0-->i的状态且不等于那个状态
{
for(k=0;k<n;k++)
{
if((j&(1<<k)&&i!=k&&j!=(1<<k)))
dp[i][j]=min(dp[i][j],dp[k][j-(1<<i)]+map[k][i]+a[i]);
}
if(((j&res)==res)&&map[i][0]+dp[i][j]<=day) //如果j状态包含res记录的状态且用时小于等于限定的时间
{
tmp=j;
cnt=0;
while(tmp) //j状态每一位的状态进行遍历
{
if(tmp%2) cnt++; //为1的位则cnt++
tmp=tmp>>1;
}
ans=max(cnt,ans); //更新最大值
//printf("test: %d\n",ans);
}
}
}
}
if(ans>=0)
printf("%d\n",ans);
else printf("No Solution\n");
}
return 0;
} //391MS


分析:
已经游览的每个点用1表示,未游览的用0表示。某时刻的游览状态就可以用一个整数的二进制形式表示。
dp[i][j]表示j状态下以i为终点的用时。
先用floyd处理每两点的最短时间。然后用floyd思想来进行动态规划。
dp方程: dp[i][j]=min(dp[i][j],dp[k][j-(1<<i)]+map[k][i]+a[i])
状态压缩的时候为了表示方便,把起点为1转化为起点为0。

如果以1为起点的话,确实不好处理。因为n个景点就有n种状态。每一位代表一个景点的状态。那么从1开始就只能用n位
表示n-1种状态。

转化为以编号0的点为起点只需每次把点的坐标前移一个即减1就行了。

注意:因为算速度的时候可能不能整除,故用double存与记录时间有关的变量为宜。并且相关的计算也要注意将整形转化
            为浮点型。


11989507

fukan

3229

Accepted

4148K

391MS

C++

2504B

2013-08-15 22:30:24

poj 3229 The Best Travel Design ( 图论+状态压缩 )的更多相关文章

  1. poj 3311 Hie with the Pie(状态压缩dp)

    Description The Pizazz Pizzeria prides itself or more (up to ) orders to be processed before he star ...

  2. POJ 1185 炮兵阵地(经典的状态压缩DP)

    题意:中文题. 思路,经典的状态压缩题目. 由于列长比较小,我们可以以行为阶段用状态压缩来做. 由于攻击只占两个格,这样从行的角度看,第i行的炮兵只与前i-1和前i-2行有关系.这样如果用j,k,l分 ...

  3. POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

    题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...

  4. poj 1753 Flip Game 枚举(bfs+状态压缩)

    题目:http://poj.org/problem?id=1753 因为粗心错了好多次……,尤其是把1<<15当成了65535: 参考博客:http://www.cnblogs.com/k ...

  5. poj 2777 Count Color(线段树、状态压缩、位运算)

    Count Color Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 38921   Accepted: 11696 Des ...

  6. POJ 2046 Gap 搜索- 状态压缩

    题目地址: http://poj.org/problem?id=2046 一道搜索状态压缩的题目,关键是怎样hash. AC代码: #include <iostream> #include ...

  7. poj2443(简单的状态压缩)

    POJ2443 Set Operation Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 2679   Accepted:  ...

  8. poj 3311 floyd+dfs或状态压缩dp 两种方法

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6436   Accepted: 3470 ...

  9. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

随机推荐

  1. StringBuilder - new line.

    //use this to implement platform-cross new-line. StringBuilder sb = new StringBuilder(); sb.append(S ...

  2. 使用Cxf发布Webservice服务,如果待发布的接口中有重载方法,怎么处理??

    使用 @WebMethod(operationName="multiParamByName")  重新指定名字. http://bbs.csdn.net/topics/270059 ...

  3. Xcode7 通过 Single View Application 得到一个 Empty Application 工程

    方法: 创建一个 Empty Application 工程 下面还是详细的说一下通过一个 Single View Application 工程得到一个 Empty Application 工程的方法: ...

  4. CSS 布局Float 【2】

    1.页面标准文档流.浮动层.float属性 1.1 文档流 HTML页面的标准文档流(默认布局)是:从上到下,从左到右,遇块(块级元素)换行. 1.2 浮动层 浮动层:给元素的float属性赋值后,就 ...

  5. DOM中的node与element的区别

    先看document的两个常见method. document.createTextNode Constructor: Text document.createElement Constructor: ...

  6. 解决Eclipse中编辑xml文件的智能提示问题,最简单的是第二种方法。

    Eclipse for Android xml 文件代码自动提示功能,介绍Eclipse 编辑器中实现xml 文件代码自动智能提示功能,解决eclipse 代码提示失效.eclipse 不能自动提示. ...

  7. C文件函数总结

    1.fopen(打开文件) 表头文件 #include<stdio.h> 定义函数 FILE *fopen(const char * path,const char * mode); pa ...

  8. underscorejs-indexBy学习

    2.19 indexBy 2.19.1 语法 _.indexBy(list, iteratee, [context]) 2.19.2 说明 给定一个list,和 一个用来返回一个在列表中的每个元素键 ...

  9. get_magic_quotes_gpc() 内置函数

    get_magic_quotes_gpc()函数 在PHP中是内置的函数,这个函数的作用就是得到php.ini设置中magic_quotes_gpc选项的值. 当magic_quotes_gpc=On ...

  10. jquery.cookie()方法

    jquery.cookie.js是一个轻量级的cookie 插件,可以读取.写入.删除 cookie. 首先包含jQuery的库文件,在后面包含 jquery.cookie.js 的库文件. < ...