Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3、Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3
第三章Convolution Neural Network (卷积神经网络)
3实例
3.1 測试数据
依照上例数据,或者新建图片识别数据。
3.2 CNN实例
//2 測试数据
Logger.getRootLogger.setLevel(Level.WARN)
valdata_path="/user/tmp/deeplearn/train_d.txt"
valexamples=sc.textFile(data_path).cache()
valtrain_d1=examples.map{ line =>
valf1 = line.split("\t")
valf =f1.map(f =>
f.toDouble)
,)
,f.length)
(,y.length,
,x.length,
,) /
255.0)
}
valtrain_d=train_d1.map(f=> (f._1, f._2))
//3 设置训练參数。建立模型
// opts:迭代步长,迭代次数,交叉验证比例
valopts= Array(100.0,1.0,0.0)
train_d.cache
valnumExamples=train_d.count()
println(s"numExamples = $numExamples.")
valCNNmodel=newCNN().
setMapsize(,, Array(28.0,28.0))).
setTypes(Array("i",
"c","s","c","s")).
setLayer().
setOnum().
setOutputmaps(Array(0.0,
6.0,0.0,12.0,0.0)).
setKernelsize(Array(0.0,
5.0,0.0,5.0,0.0)).
setScale(Array(0.0,
0.0,2.0,0.0,2.0)).
setAlpha(1.0).
setBatchsize(50.0).
setNumepochs(1.0).
CNNtrain(train_d,opts)
//4 模型測试
valCNNforecast=CNNmodel.predict(train_d)
valCNNerror=CNNmodel.Loss(CNNforecast)
println(s"NNerror = $CNNerror.")
),
f.))).take()
println("预測结果——实际值:预測值:误差")
until
printf1.length)
println(printf1(i)._1 +"\t"
+printf1(i)._2 +"\t" + (printf1(i)._2
-printf1(i)._1)) val
numExamples = train_d.count()
println(s"numExamples = $numExamples.")
println(mynn._2)
to
) {
print(mynn._1(i) +"\t")
}
println()
println("mynn_W1")
)
to
) {
to
) {
print(tmpw1(i,j) +
"\t")
}
println()
}
valNNmodel=newNeuralNet().
setSize(mynn._1).
setLayer(mynn._2).
setActivation_function("sigm").
setOutput_function("sigm").
setInitW(mynn._3).
NNtrain(train_d,nnopts)
//5 NN模型測试
valNNforecast=NNmodel.predict(train_d)
valNNerror=NNmodel.Loss(NNforecast)
println(s"NNerror = $NNerror.")
),
f.))).take()
println("预測结果——实际值:预測值:误差")
until
printf1.length)
println(printf1(i)._1 +"\t"
+printf1(i)._2 +"\t" + (printf1(i)._2
-printf1(i)._1))
转载请注明出处:
Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3的更多相关文章
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- Deep learning与Neural Network
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...
- 通过Visualizing Representations来理解Deep Learning、Neural network、以及输入样本自身的高维空间结构
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visua ...
- Deep Learning 教程(斯坦福深度学习研究团队)
http://www.zhizihua.com/blog/post/602.html 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为 ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
随机推荐
- struts2连接mysql多表查询
下载地址:http://download.csdn.net/detail/qq_33599520/9786567 项目结构: 代码: package com.mstf.action; import j ...
- PostgreSQL Replication之第六章 监控您的设置(2)
6.2 检查pg_stat_replication 检查归档以及 archive_command主要用于即时恢复( PITR,Point-In-Time- Recovery).如果您想监控一个基于流的 ...
- 深入理解 sudo 与 su 之间的区别
深入理解 sudo 与 su 之间的区别 作者: Himanshu Arora 译者: LCTT zhb127 在早前的一篇文章中,我们深入讨论了 sudo 命令的相关内容.同时,在该文章的末尾有提到 ...
- kolla-ansible 安装openstack 拉取阿里云镜像时报错
TASK [mariadb : Pulling mariadb image] ************************************************************ ...
- caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)
caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽 (1) 字符串下标从1开始,因为0用来表示 ...
- 05-数据类型转换(bool类型)
- POJ——T 3255 Roadblocks|| COGS——T 315. [POJ3255] 地砖RoadBlocks || 洛谷—— P2865 [USACO06NOV]路障Roadblocks
http://poj.org/problem?id=3255 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15680 ...
- static_cast 与 dynamic_cast
- SDSoC使用体验
本文作者:卜居 转载请保留作者信息.原文网址(http://blog.csdn.net/kkk584520/article/details/47220575). 本文project可到我的资源下载(h ...
- vim 脚本之快速打印log
" zsl_log.vim " Version: 1.0 if exists("g:zsl_loaded_log") || &cp || v:versi ...