Time limit: 3.000 seconds

Given is an alphabet {0, 1, ... , k}, 0
<= k <= 9 . We say that a word of length n over this alphabet is tightif
any two neighbour digits in the word do not differ by more than 1.

Input is a sequence of lines, each line contains two integer numbers k and n1 <= n <= 100. For each line of input, output the percentage of tight words of length n over the
alphabet {0, 1, ... , k} with 5 fractional digits.

Sample input

4 1
2 5
3 5
8 7

Output for the sample input

100.00000
40.74074
17.38281
0.10130

题意:给定两个数k,n。

用 {0,
1, ... , k}的数组成一个n个数的序列。假设这个序

列每两个相邻的数相差<=1,就记为是tight,求这样的序列占总序列的比率。

思路: dp[i][j]表示第i为数字是j的概率 。

即   dp[i][j] = 1/(k+1) *  (dp[i-1][j-1]+dp[i-1][j] + dp[i+1][j] );

注意下边界就OK了。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=105; double dp[maxn][15],t,ans;
int n,k; void initial()
{
memset(dp,0,sizeof(dp));
t=1.0/(k+1),ans=0.0;
for(int j=0; j<=k; j++) dp[1][j]=t;
} void solve()
{
for(int i=2; i<=n; i++)
for(int j=0; j<=k; j++)
{
dp[i][j]+=t*dp[i-1][j];
if(j!=0) dp[i][j]+=t*dp[i-1][j-1];
if(j!=k) dp[i][j]+=t*dp[i-1][j+1];
}
for(int j=0; j<=k; j++) ans+=dp[n][j];
printf("%.5lf\n",ans*100);
} int main()
{
while(scanf("%d %d",&k,&n)!=EOF)
{
initial();
solve();
}
return 0;
}

Uva 10081 Tight words (概率DP)的更多相关文章

  1. Substring UVA - 11468 AC自动机+概率DP

    题意: 给出一些字符和各自对应的选择概率,随机选择L次后得到一个长度为L的随机字符串S. 给出K个模板串,计算S不包含任何一个模板串的概率 dp[i][j]表示走到AC自动机 i 这个节点 还需要走 ...

  2. UVA 10529-Dumb Bones(概率dp)

    题意: 给出放一个多米诺骨牌,向左向右倒的概率,求要放好n个骨牌,需要放置的骨牌的期望次数. 分析: 用到区间dp的思想,如果一个位置的左面右面骨牌都已放好,考虑,放中间的情况, dp[i]表示放好前 ...

  3. UVA 10081 Tight numbers(POJ 2537)

    直接看代码就OK.思路比较简单.就是注意概率要在转移过程中算出来.不能算成成立的方案书除以总方案数(POJ的这道题可以这么干.数据很水么.另外POJ要用%.5f,%.5lf 会WA.) #includ ...

  4. UVA 10529 - Dumb Bones (概率dp)

    题目描述 You are trying to set up a straight line of dominos, standing on end, to be pushed over later f ...

  5. UVA 11021 C - Tribles(概率DP)

    记忆化就可以搞定,比赛里都没做出来,真的是态度有问题啊... #include <iostream> #include<cstdio> #include<cstring& ...

  6. UVa 11468 (AC自动机 概率DP) Substring

    将K个模板串构成一个AC自动机,那些能匹配到的单词节点都称之为禁止节点. 然后问题就变成了在Tire树上走L步且不经过禁止节点的概率. 根据全概率公式用记忆化搜索求解. #include <cs ...

  7. uva 11468 AC自动机+概率DP

    #include<cstdio> #include<cstring> #include<queue> #include<cstdio> #include ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

随机推荐

  1. [Android] 使用Matrix矩阵类对图像进行缩放、旋转、对照度、亮度处理

        前一篇文章讲述了Android拍照.截图.保存并显示在ImageView控件中,该篇文章继续讲述Android图像处理技术,主要操作包含:通过打开相冊里的图片,使用Matrix对图像进行缩放. ...

  2. pandas dataframe 做机器学习训练数据=》直接使用iloc或者as_matrix即可

    样本示意,为kdd99数据源: 0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.0 ...

  3. hpuoj--校赛--爬楼梯(模拟)

    问题 E: 感恩节KK专场--爬楼梯 时间限制: 1 Sec  内存限制: 1000 MB 提交: 382  解决: 89 [提交][状态][讨论版] 题目描述 来机房比赛的时候大家都会爬楼梯,但是每 ...

  4. Windows 相关

    Open the Windows Update troubleshooter If your computer is having problems finding and installing op ...

  5. Spring MVC 核心架构图

    架构图对应的DispatcherServlet核心代码如下: //前端控制器分派方法 protected void doDispatch(HttpServletRequest request, Htt ...

  6. 1、Go base64编码

    package main import ( "encoding/base64" "fmt") func main() { //标准base64编码 data:= ...

  7. 微星(MSI)新主板B150M MORTAR U盘装win7的坎坷经历

    新买的微星主板,热心的同事帮忙装好了win10,但是显卡驱动没装好,屏幕都快看瞎了眼,再者,楼主非常不喜欢win10的花哨,所以就装回了win7.下面来说一下我装win7的痛苦经历. 我是用UItra ...

  8. NodeJS学习笔记 进阶 (13)Nodejs进阶:5分钟入门非对称加密用法

    个人总结:读完这篇文章需要5分钟,这篇文章讲解了Node.js非对称加密算法的实现. 摘录自网络 地址: https://github.com/chyingp/nodejs-learning-guid ...

  9. JavaScript进阶之原型链

    对象 function f1(){ }; typeof f1 //"function"函数对象 var o1 = new f1(); typeof o1 //"objec ...

  10. WPF模仿QQ登录按钮

    原文:WPF模仿QQ登录按钮 如下图,第一张是未点击时按钮样式,第二张是鼠标划过时按钮样式. 样式代码: <Style TargetType="{x:Type Button}" ...