深度学习2015年文章整理(CVPR2015)
国内外从事计算机视觉和图像处理相关领域的著名学者都以在三大顶级会议(ICCV。CVPR和ECCV)上发表论文为荣,其影响力远胜于一般SCI期刊论文。这三大顶级学术会议论文也引领着未来的研究趋势。CVPR是基本的计算机视觉会议。能够把它看作是计算机视觉研究的奥林匹克。
博主今天先来整理CVPR2015年的精彩文章(这个就够非常长一段时间消化的了)
顶级会议CVPR2015參会paper网址:
http://www.cv-foundation.org/openaccess/CVPR2015.py
来吧,一项项的開始整理。总有你须要的文章在等你!
CNN Architectures
CNN网络结构:
1.Hypercolumns for Object Segmentation and Fine-Grained Localization
Authors: Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
2.Modeling Local and Global Deformations in Deep Learning: Epitomic Convolution, Multiple Instance Learning, and Sliding Window Detection
Authors: George Papandreou, Iasonas Kokkinos, Pierre-André Savalle
3.Going Deeper With Convolutions
Authors: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
这篇文章推荐一下。使用了《network in network》中的用 global averaging pooling layer 替代 fully-connected layer的思想。有看过的能够私信博主,一起讨论文章心得。
4.Improving Object Detection With Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
Authors: Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee
5.Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Authors: Anh Nguyen, Jason Yosinski, Jeff Clune
Action and Event Recognition
1.Deeply Learned Attributes for Crowded Scene Understanding
Authors: Jing Shao, Kai Kang, Chen Change Loy, Xiaogang Wang
2.Modeling Video Evolution for Action Recognition
Authors: Basura Fernando, Efstratios Gavves, José Oramas M., Amir Ghodrati, Tinne Tuytelaars
3.Joint Inference of Groups, Events and Human Roles in Aerial Videos
Authors: Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic, Song Chun Zhu
Segmentation in Images and Video
1.Causal Video Object Segmentation From Persistence of Occlusions
Authors: Brian Taylor, Vasiliy Karasev, Stefano Soatto
2.Fully Convolutional Networks for Semantic Segmentation
Authors: Jonathan Long, Evan Shelhamer, Trevor Darrell
——文章把全连接层当做卷积层,也用来输出featuremap。
这样相比Hypercolumns/HED 这种模型,可迁移的模型层数(指VGG16/Alexnet等)就很多其他了。可是从文章来看,由于纯卷积嘛,所以featuremap的每个点之间没有位置信息的区分。相较于Hypercolumns的claim。鼻子的点出如今图像的上半部分能够划分为pedestrian类的像素,可是假设出如今下方就应该划分为背景。所以位置信息应该是挺重要须要考虑的。
这或许是速度与性能的trade-off?
3.Is object localization for free - Weakly-supervised learning with convolutional neural networks
——弱监督做object detection的文章。首先fc layer当做conv layer与上面这篇文章思想一致。同一时候把最后max pooling之前的feature map看做包括class localization的信息,仅仅只是从第五章“Does adding object-level supervision help classification”的结果看。效果虽好,可是这一物理解释可能不够完好。
4.Shape-Tailored Local Descriptors and Their Application to Segmentation and Tracking
Authors: Naeemullah Khan, Marei Algarni, Anthony Yezzi, Ganesh Sundaramoorthi
5.Deep Filter Banks for Texture Recognition and Segmentation
Authors: Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi
6.Deeply learned face representations are sparse, selective, and robust, Yi Sun, Xiaogang Wang, Xiaoou Tang
——DeepID系列之DeepID2+。在DeepID2之上的改进是添加了网络的规模(feature map数目)。另外每一层都接入一个全连通层加supervision。
最精彩的地方应该是后面对神经元性能的分析,发现了三个特点:1.中度稀疏最大化了区分性。并适合二值化;2.身份和attribute选择性。3.对遮挡的鲁棒性。这三个特点在模型训练时都没有显示或隐含地强加了约束。都是CNN自己学的。
Image and Video Processing and Restoration
1.Fast and Flexible Convolutional Sparse Coding
Authors: Felix Heide, Wolfgang Heidrich, Gordon Wetzstein
2.What do 15,000 Object Categories Tell Us About Classifying and Localizing Actions?
Authors: Mihir Jain, Jan C. van Gemert, Cees G. M. Snoek
——物品的分类对行为检測有帮助作用。这篇文章是第一篇关于这个话题进行探讨的。是个深坑,大家能够关注一下,考虑占坑。
3.Hypercolumns for Object Segmentation and Fine-Grained Localization
Authors:Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
——一个非常好的思路!曾经的CNN或者R-CNN,我们总是用最后一层作为class label。倒数第二层作为feature。这篇文章的作者想到利用每一层的信息。
由于对于每个pixel来讲,在全部层数上它都有被激发和不被激发两种态。作者利用了每一层的激发态作为一个feature vector来帮助自己做精细的物体检測。
3D Models and Images
1.The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose
Authors: Silvia Zuffi, Michael J. Black
2.3D Shape Estimation From 2D Landmarks: A Convex Relaxation Approach
Authors: Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu, Kostas Daniilidis
Images and Language
这个类别的文章须要好好看看,对思路的发散非常有帮助
1.Show and Tell: A Neural Image Caption Generator
Authors: Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan
2.Deep Visual-Semantic Alignments for Generating Image Descriptions
Authors: Andrej Karpathy, Li Fei-Fei
3.Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
Authors: Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell
4.Becoming the Expert - Interactive Multi-Class Machine Teaching
Authors: Edward Johns, Oisin Mac Aodha, Gabriel J. Brostow
其他
參考文献一:CNN卷积神经网络的改进(15年最新paper):
http://blog.csdn.net/u010402786/article/details/50499864
文章中的四篇文章也值得一读,当中一篇在上面出现过。
一定要自己下载下来看一看。
參考文献二:这是另外一个博主的博客,也是对CVPR的文章进行了整理:
http://blog.csdn.net/jwh_bupt/article/details/46916653
基本很多文章里面没有凝视核心思想,接下来慢慢补充。2016-01-20
深度学习2015年文章整理(CVPR2015)的更多相关文章
- (转)Deep Learning深度学习相关入门文章汇摘
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=18 ...
- 《神经网络和深度学习》系列文章十二:Hadamard积,s⊙t
出处: Michael Nielsen的<Neural Network and Deep Learning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR本科生 王宇轩 ...
- 《神经网络和深度学习》系列文章三:sigmoid神经元
出处: Michael Nielsen的<Neural Network and Deep Leraning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR硕士生 徐伟 ...
- 对生成对抗网络GANs原理、实现过程、应用场景的理解(附代码),另附:深度学习大神文章列表
https://blog.csdn.net/love666666shen/article/details/75522489 https://blog.csdn.net/yangdelong/artic ...
- CVPR2015深度学习回顾
原文链接:http://www.csdn.net/article/2015-08-06/2825395 本文做了少量修改,仅作转载存贮,如有疑问或版权问题,请访问原作者或告知本人. CVPR可谓计算机 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习&深度学习经典资料汇总,data.gov.uk大量公开数据
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)(1)
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定 ...
随机推荐
- 集群环境下,Session管理的几种手段
集群环境下,Session管理的几种手段 1.Session复制 缺点:集群服务器间需要大量的通信进行Session复制,占用服务器和网络的大量资源. 由于所有用户的Session信息在每台服务器上都 ...
- grpc编译错误解决
berli@berli-VirtualBox:~/grpc$ make [MAKE] Generating cache.mk [C] Compiling src/core/lib/s ...
- Gcc/MinGW/Cygwin/Msys 分别是什么?
一.GCC的历史 GCC是一个原本用于Unix-like系统下编程的编译器. 不过,现在GCC也有了许多Win32下的移植版本. 所以,也许对于许多Windows开发者来说,GCC还是一个比较陌生的东 ...
- BZOJ 2124 线段树维护hash值
思路: http://blog.csdn.net/wzq_QwQ/article/details/47152909 (代码也是抄的他的) 自己写得垃圾线段树怎么都过不了 隔了两个月 再写 再挂 又隔了 ...
- LIMIT语句解析及本章简单回顾(二十九)
一.LIMIT 限制查询结果返回的数量 [LIMIT {[offset,] row_count | row_count OFFSET offset}] select * from user; 除了可以 ...
- Android 学习笔记:Navigation Drawer
laylout文件: <android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.android.com ...
- Linux学习-Ubuntu 18.04-安装图文教程
Ubuntu(友帮拓.优般图.乌班图)是一个以桌面应用为主的开源GNU/Linux操作系统,Ubuntu 是基于Debian GNU/Linux,支持x86.amd64(即x64)和ppc架构,由全球 ...
- Incermental GC
目录 增量式垃圾回收 什么是增量式垃圾回收 三色标记算法 GC 标记清除算法的分割 根查找阶段 标记阶段 写入屏障 清除阶段 分配 优点和缺点 缩短最大暂停时间 降低了吞吐量 Steele 的算法 m ...
- Atitit.软件开发的终于的设计 dsl化,ast化(建立ast, 解析运行ast)
Atitit.软件开发的终于的设计 dsl化,ast化(建立ast, 解析运行ast) 1. 使用js,html 撰写dsl 1 1.1. 架构图 1 1.2. html 2 1.3. Js 2 1. ...
- Nrf51822中设置128bit UUID service
Nrf51822中设置128bit UUID service uint32_tble_dajia_add_service(ble_dajia_t *p_wechat) { uint32_t err_c ...