题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555

Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would
add one point.

Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
 
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.



The input terminates by end of file marker.
 
Output
For each test case, output an integer indicating the final points of the power.
 
Sample Input
3
1
50
500
 
Sample Output
0
1
15
Hint
From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499",
so the answer is 15.
 
Author
fatboy_cw@WHU
 
Source

题意:

求0 到n的数中有多少个数字是含有‘49’的。

PS:

数位DP

//dp[i][j]:长度为i的数的第j种状态

//dp[i][0]:长度为i可是不包括49的方案数

//dp[i][1]:长度为i且不含49可是以9开头的数字的方案数

//dp[i][2]:长度为i且包括49的方案数

(转)状态转移例如以下

dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1];  // not include 49  假设不含49且,在前面能够填上0-9 可是要减去dp[i-1][1] 由于4会和9构成49

dp[i][1] = dp[i-1][0];  // not include 49 but starts with 9  这个直接在不含49的数上填个9即可了

dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // include 49  已经含有49的数能够填0-9,或者9开头的填4



接着就是从高位開始统计



在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然对的。由于这一位能够填 0 - (digit[i]-1)

若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然对的。

若这一位之前没有挨着49,可是digit[i]比4大,那么当这一位填4的时候,就得加上dp[i-1][1]

代码例如以下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef __int64 LL;
LL dp[27][3];
int c[27];
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i可是不包括49的方案数
//dp[i][1]:长度为i且不含49可是以9开头的数字的方案数
//dp[i][2]:长度为i且包括49的方案数
void init()
{
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i = 1; i <= 20; i++)
{
dp[i][0] = dp[i-1][0]*10-dp[i-1][1];
dp[i][1] = dp[i-1][0]*1;
dp[i][2] = dp[i-1][2]*10+dp[i-1][1];
}
} int cal(LL n)
{
int k = 0;
memset(c,0,sizeof(c));
while(n)
{
c[++k] = n%10;
n/=10;
}
c[k+1] = 0;
return k;
}
void solve(int len, LL n)
{
int flag = 0;//标记是否出现过49
LL ans = 0;
for(int i = len; i >= 1; i--)
{
ans+=c[i]*dp[i-1][2];
if(flag)
{
ans+=c[i]*dp[i-1][0];
}
else if(c[i] > 4)
{
//这一位前面没有挨着49。但c[i]比4大,那么当这一位填4的时候,要加上dp[i-1][1]
ans+=dp[i-1][1];
}
if(c[i+1]==4 && c[i]==9)
{
flag = 1;
}
}
printf("%I64d\n",ans);
}
int main()
{
int t;
LL n;
init();
scanf("%d",&t);
while(t--)
{
scanf("%I64d",&n);
int len = cal(n+1);
solve(len, n);
}
return 0;
}

DFS版

代码例如以下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL __int64
LL n, dp[25][3];
//dp[i][j]:长度为i。状态为j
int digit[25];
//nstatus: 0:不含49, 1:不含49但末尾是4, 2 :含49
LL DFS(int pos, int status, int limit)
{
if(pos <= 0) // 假设到了已经枚举了最后一位。而且在枚举的过程中有49序列出现
return status==2;//注意是 ==
if(!limit && dp[pos][status]!=-1) //对于有限制的询问我们是不可以记忆化的
return dp[pos][status];
LL ans = 0;
int End = limit?digit[pos]:9; // 确定这一位的上限是多少
for(int i = 0; i <= End; i++) // 每一位有这么多的选择
{
int nstatus = status; // 有点else s = statu 的意思 if(status==0 && i==4)//高位不含49。而且末尾不是4 ,如今末尾添4返回1状态
nstatus = 1;
else if(status==1 && i!=4 && i!=9)//高位不含49。且末尾是4,如今末尾加入的不是4返回0状态
nstatus = 0;
else if(status==1 && i==9)//高位不含49,且末尾是4,如今末尾加入9返回2状态
nstatus = 2;
ans+=DFS(pos-1, nstatus, limit && i==End);
}
if(!limit)
dp[pos][status]=ans;
return ans;
} int cal(LL x)
{
int cnt = 0;
while(x)
{
digit[++cnt] = x%10;
x/=10;
}
digit[cnt+1] = 0;
return cnt;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(dp,-1,sizeof(dp));
scanf("%I64d",&n);
int len = cal(n);
LL ans = DFS(len, 0, 1);
printf("%I64d\n",ans);
}
return 0;
}

HDU 3555 Bomb(数位DP模板啊两种形式)的更多相关文章

  1. HDU 3555 Bomb 数位dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others) Mem ...

  2. HDU 3555 Bomb 数位DP 入门

    给出n,问所有[0,n]区间内的数中,不含有49的数的个数 数位dp,记忆化搜索 dfs(int pos,bool pre,bool flag,bool e) pos:当前要枚举的位置 pre:当前要 ...

  3. HDU - 3555 - Bomb(数位DP)

    链接: https://vjudge.net/problem/HDU-3555 题意: The counter-terrorists found a time bomb in the dust. Bu ...

  4. Bomb HDU - 3555 (数位DP)

    Bomb HDU - 3555 (数位DP) The counter-terrorists found a time bomb in the dust. But this time the terro ...

  5. HDU 3555 Bomb (数位DP-记忆化搜索模板)

    题意 求区间[1,n]内含有相邻49的数. 思路 比较简单的按位DP思路.这是第一次学习记忆化搜索式的数位DP,确实比递推形式的更好理解呐,而且也更通用~可以一般化: [数位DP模板总结] int d ...

  6. HDU(3555),数位DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others ...

  7. hud 3555 Bomb 数位dp

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Subm ...

  8. HDU 2089 数位dp/字符串处理 两种方法

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. hdoj 3555 BOMB(数位dp)

    //hdoj 3555 //2013-06-27-16.53 #include <stdio.h> #include <string.h> __int64 dp[21][3], ...

随机推荐

  1. iOS开发——GCD总结

    Grand Central Dispatch,简称GCD,在异步执行任务的技术之一. 一般将应用程序中记述的线程管理用的代码在系统级中实现,开发者只需要定义想执行的任务并追加到适当的Dispatch ...

  2. 使用VUE开发微信小程序

    使用 mpvue 开发小程序,你将在小程序技术体系的基础上获取到这样一些能力: 彻底的组件化开发能力:提高代码复用性完整的 Vue.js 开发体验方便的 Vuex 数据管理方案:方便构建复杂应用快捷的 ...

  3. redis做成windows服务

    打开cmd切换到redis根目录 执行安装命令  redis-server.exe --service-install redis.windows.conf --loglevel verbose 卸载 ...

  4. jQuery第三课 点击按钮 弹出层div效果

    jQuery 事件方法 事件方法会触发匹配元素的事件,或将函数绑定到所有匹配元素的某个事件. 触发实例: $("button#demo").click() 上面的例子将触发 id= ...

  5. 使用vuex的流程随笔

    1.在建好的vue项目中新建一个vuex文件夹在此文件夹下建一个index.js文件,在此文件下引入vuex 模块(当然需要先npm下载)和vue模块,在引入你所有的自定义的module.js模块(下 ...

  6. #undef 的用法

    在Visual Studio2008中编写如下代码: #include <iostream> using namespace std; int main() { #define MODI ...

  7. Lock-less buffer management scheme for telecommunication network applications

    A buffer management mechanism in a multi-core processor for use on a modem in a telecommunications n ...

  8. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  9. zookeeper应用场景练习(分布式锁)

    在寻常的高并发的程序中.为了保证数据的一致性.因此都会用到锁.来对当前的线程进行锁定.在单机操作中.非常好做到,比方能够採用Synchronized.Lock或者其它的读写多来锁定当前的线程.可是在分 ...

  10. 建筑建模学习笔记2——3DMax房屋框架建模

    以下这幅图是用3DMax做出的大体的框架 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I ...