bzoj 2287: 【POJ Challenge】消失之物 动态规划
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
我们最终要求的就是一整个 $c[i][j]$ 表格.
逆序枚举 $j$,则 $ans[j]+=ans[j-v[i]]$
当 $j<v[i]$ 时:
- $c[i][j]=ans[j]$.
- $c[i][j]=ans[j]-$容量为 $j$ 且选 $i$ 的方案数 .
- 容量为 $j$ 且选 $i$ 的方案数 $=$ 选 $i$ 方案数 + 其他选 $j-v[i]$ 方案数 $=c[i][j-v[i]]$ .
- 即 $c[i][j]=ans[j]-c[i][j-v[i]]$.
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<vector>
#include<string>
using namespace std;
void setIO(string a){ freopen((a+".in").c_str(),"r",stdin),freopen((a+".out").c_str(),"w",stdout); }
void shutIO(){ fclose(stdin),fclose(stdout); }
#define maxn 2005
#define mod 10
int v[maxn],ans[maxn], c[maxn][maxn];
int n,m;
int main(){
//setIO("input");
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%d",&v[i]);
ans[0]=1;
for(int i=1;i<=n;++i){
for(int j=m;j>=v[i];--j) ans[j]+=ans[j-v[i]],ans[j]%=mod;
}
for(int i=1;i<=n;++i){
c[i][0]=1;
for(int j=1;j<=m;++j){
if(j>=v[i]) c[i][j]=(ans[j]-c[i][j-v[i]]+mod)%mod;
else c[i][j]=ans[j];
printf("%d",c[i][j]);
}
printf("\n");
}
shutIO();
return 0;
}
bzoj 2287: 【POJ Challenge】消失之物 动态规划的更多相关文章
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物
题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...
- BZOJ2287 【POJ Challenge】消失之物 动态规划 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8684027.html 题目传送门 - BZOJ2287 题意 有$n$个物品,第$i$个物品的体积为$w_i$. ...
随机推荐
- PowerDesigner 16.5 安装及破解步骤
安装: 1.双击运行PowerDesigner16.5_Evaluation.exe,进入安装界面,点击(Next)下一步按钮: 2.下拉菜单选择HongKong,选中 I agree to the ...
- dialog.setCancelable与setCanceledOnTouchOutside的区别
dialog.setCancelable(false); dialog弹出后会点击屏幕或物理返回键,dialog不消失 dialog.setCanceledOnTouchOutside(false); ...
- iF.svnadmin 安装遇到的坑
iF.svnadmin 官网:http://svnadmin.insanefactory.com/ 安装配置iF.svnadmin : http://blog.linhere.com/archives ...
- mongodb报错:connection refused because too many open connections: 819
问题: 发现mongodb无法连接,查看mongodb日志,出现大量的如下报错: [initandlisten] connection refused because too many open co ...
- P2421 [NOI2002]荒岛野人 扩展欧几里得 枚举
Code: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...
- “.”开头,以"}"结尾,中间是任意字符的正则
"."开头,以"}"结尾,中间是任意字符的正则 /^\..+\{$/
- split方法切割数组
指定的字符串按"o"截取 当一个base64需要剪去前面的部分的时候 var params={ "imgJustBase64":this.zheng.split ...
- 浅谈htmlentities 、htmlspecialchars、addslashes的使用方法
html_entity_decode():把html实体转换为字符. $str = "just atest & 'learn to use '"; echo html_en ...
- 2017年6月28日 python爬虫学习
1.写入csv文件2.lxml的用法3.自定义字典类的方法4.bytes解码得到str,str编码得到bytes5.json 1 import csv import lxml.html class S ...
- ajax同时提交表单且包含文件
说明一下:FormData对象是html5的一个对象,目前的一些主流的浏览器都已经兼容.ie8暂时不支持,不支持FormData的,可以使用方法二,下面会介绍.接着说FormData,它是一个html ...